forked from namanv12/Troll-Identification-using-tweets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain_new.py
250 lines (196 loc) · 6.51 KB
/
Main_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python
# coding: utf-8
import os
import csv
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression
import numpy as np
import json
import random
from sklearn.naive_bayes import GaussianNB
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from keras.models import Model
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.optimizers import RMSprop
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.utils import to_categorical, plot_model
from keras.callbacks import EarlyStopping
from sklearn.utils import shuffle
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from tensorflow.python.util import deprecation
deprecation._PRINT_DEPRECATION_WARNINGS = False
cmdpos= "head -n 1 data/filtered.csv > data/sampled.csv && tail -n +2 data/filtered.csv | shuf -n 10000 >> data/sampled.csv"
cmdneg= "head -n 1 data/filtered.txt > data/sampled.txt && tail -n +2 data/filtered.txt | shuf -n 10000 >> data/sampled.txt"
os.system(cmdpos)
os.system(cmdneg)
# loading negative samples saved in sampled.txt
f = open('data/sampled.txt', 'r')
lines = f.readlines()
tweets = []
labels = []
model=["LSTM","Naive_Bayesian","Logistic_Regression"]
# varibles to split data for training and testing
len_train =8000
len_total=10000
# loading positive samples saved in sampled.csv
with open('data/sampled.csv', newline='') as csvfile:
categories = csvfile.readline().split(",")
tweetreader = csv.reader(csvfile, delimiter=',')
counter = 0
for row in tweetreader:
tweet = dict(zip(categories, row))
if tweet['language'] == 'English':
tweets.append(tweet['content']) # collecting only tweets with text content in english using the dictionary
labels.append(1)
counter += 1
if counter > len_total: # capping total rows to len_total
break
csvfile.close()
# appending postive labels to negative labels.
for line in lines:
tweets.append(line)
labels.append(0)
f.close()
tweets_to_labels = dict(zip(tweets, labels))
# shuffling rows of entire postive and negative labels.
random.shuffle(tweets)
# seperating target variable i.e, Y from the shuffled data.
actual = []
for tweet in tweets:
actual.append(tweets_to_labels[tweet])
# creating word embedings
vectorizer = CountVectorizer(binary=True, lowercase=True)
total = vectorizer.fit_transform(np.array(tweets))
# splitting total data to train and test sets.
Xtrain = total[:len_train]
Ytrain=actual[:len_train]
Xtest = total[len_train:len_total]
# LSTM
def lstm():
#load positive tweets (random tweets)
pos = open('data/sampled.csv').read()
npos = 0
label, texts = [], []
for i, line in enumerate(pos.split("\n")):
content = line.split(',')
if len(content) < 4:
continue;
if content[4] != "English":
continue;
label.append(1)
texts.append(content[2])
npos += 1
# load negative labels (random tweets)
neg = open('data/sampled.txt').read()
nneg = 0
for i, line in enumerate(neg.split("\n")):
label.append(0)
texts.append(line)
nneg += 1
texts, label = shuffle(texts, label)
df = pd.DataFrame()
df['text'] = texts
df['label'] = label
df.head()
# encoding the tweets data with the labels
enc = LabelEncoder()
y = enc.fit_transform(label)
train_x, test_x, train_y, test_y = train_test_split(df['text'], y, test_size=0.20)
maxlen = 280
# tokenizing the data for training
token = Tokenizer()
token.fit_on_texts(df['text'])
sequences = token.texts_to_sequences(train_x)
padded = sequence.pad_sequences(sequences, maxlen=maxlen)
# initializing the model
def make_model():
inputs = Input(name='inputs',shape=[maxlen])
layer = Embedding(len(token.word_index)+1,50,input_length=maxlen)(inputs)
layer = LSTM(64, dropout=0.2, return_sequences=True)(layer)
layer = LSTM(64, dropout=0.2)(layer)
layer = Dense(256, name='FC1')(layer)
layer = Activation('relu')(layer)
layer = Dense(1, name='out_layer')(layer)
layer = Activation('sigmoid')(layer)
model = Model(inputs=inputs,outputs=layer)
return model
model = make_model()
model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=0.00011), metrics=['accuracy'])
history = model.fit(padded,train_y,batch_size=128,epochs=10,
validation_split=0.20)
test_sequences = token.texts_to_sequences(test_x)
test_padded = sequence.pad_sequences(test_sequences,maxlen=maxlen)
results = model.predict(test_padded)
accuracy = model.evaluate(test_padded, test_y)
print('LSTM accuracy: \n', accuracy[1])
# Plot training & validation accuracy values
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.ylim(0,1)
plt.xlim(0,11)
plt.legend(['Train_accuracy', 'Test_accuracy'], loc='upper left')
plt.show()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.ylim(0,1)
plt.xlim(0,11)
plt.legend(['Train_loss', 'Test_loss'], loc='upper right')
plt.show()
# naive_bayes classifier
def Naive_Bayes(X_train,Y_train,X_test):
Xtrain=X_train.toarray()
Ytrain=Y_train
Xtest=X_test.toarray()
model = GaussianNB()
model.fit(Xtrain, Ytrain)
return model.predict(Xtest)
# logistic_regression classifier
def Logistic_Regression(X_train,Y_train,X_test):
Xtrain=X_train.toarray()
Ytrain=np.array(Y_train)
Xtest=X_test.toarray()
lr=LogisticRegression(solver='liblinear')
lr.fit(Xtrain,Ytrain)
return lr.predict(Xtest)
# testing accuracy
def print_accuracy(Ytest):
pred=Ytest
correct = 0
true_positive = 0
total_positive = 0
true_negative = 0
total_negative = 0
for i in range(len(pred)):
if actual[i+len_train]:
total_positive += 1
else:
total_negative += 1
if pred[i] == actual[i+len_train]:
correct += 1
if actual[i+len_train]:
true_positive += 1
else:
true_negative += 1
print(correct / len(pred))
# implementing earlier mentioned techniques.
for i in model:
if i=="LSTM":
lstm()
if i=="Naive_Bayesian":
print("Naive Bayes accuracy:")
print_accuracy(Naive_Bayes(Xtrain,Ytrain,Xtest))
if i=="Logistic_Regression":
print("Logistic Regression accuracy:")
print_accuracy(Logistic_Regression(Xtrain,Ytrain,Xtest))