-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_dne_gezo.py
355 lines (279 loc) · 14.4 KB
/
train_dne_gezo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# We changed it for adapted in our paper.
# --------------------------------------------------------
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import copy
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import timm
# assert timm.__version__ == "0.3.2" # version check
from timm.models.layers import trunc_normal_
from timm.data.mixup import Mixup
import util.misc as misc
from util.datasets import build_dataset_chest_xray
from util.pos_embed import interpolate_pos_embed
import models_vit
from engine_finetune import train_dne_gezo
from engine_finetune import DNELayer
from pprint import pprint
def get_args_parser():
parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False)
parser.add_argument('--batch_size', default=32, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
# Optimizer parameters
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
# Augmentation parameters
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0,
help='mixup alpha, mixup enabled if > 0.')
parser.add_argument('--cutmix', type=float, default=0,
help='cutmix alpha, cutmix enabled if > 0.')
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup_prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup_switch_prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup_mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# * Finetuning params
parser.add_argument('--finetune', default='',
help='finetune from checkpoint')
parser.add_argument('--global_pool', action='store_true')
parser.set_defaults(global_pool=True)
# Dataset parameters
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--nb_classes', default=1000, type=int,
help='number of the classification types')
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--dist_eval', action='store_true', default=False,
help='Enabling distributed evaluation (recommended during training for faster monitor')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--eval_interval', default=2, type=int)
parser.add_argument('--vit_dropout_rate', type=float, default=0.1,
help='Dropout rate for ViT blocks (default: 0.1)')
parser.add_argument("--dataset", default='chestxray', type=str)
parser.add_argument('--loss_func', default=None, type=str)
parser.add_argument('--sa_path', default="./sa_cls.pt", type=str, help="the path to the sensitive attribute classifier")
parser.add_argument("--csv_path", default=None, type=str)
parser.add_argument("--disease", default=None, type=str)
parser.add_argument("--lambda_1", default=1.0, type=float)
parser.add_argument("--lambda_reg", default=0.01, type=float)
parser.add_argument('--dne', action='store_true')
parser.add_argument("--init_step", default=0.01, type=float)
parser.add_argument("--sampled_steps", default=10, type=int)
parser.add_argument("--momentum", default=0.9, type=int)
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_train = build_dataset_chest_xray(split='train', args=args)
dataset_test = build_dataset_chest_xray(split='test', args=args)
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_test) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
# sampler_val = torch.utils.data.DistributedSampler(
# dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True) # shuffle=True to reduce monitor bias
sampler_test = torch.utils.data.DistributedSampler(
dataset_test, num_replicas=num_tasks, rank=global_rank, shuffle=True)
else:
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
if global_rank == 0 and args.log_dir is not None and not args.eval:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
print("Mixup is activated!")
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
if 'vit' in args.model:
model = models_vit.__dict__[args.model](
img_size=args.input_size,
num_classes=args.nb_classes,
drop_rate=args.vit_dropout_rate,
drop_path_rate=args.drop_path,
global_pool=args.global_pool,
)
else:
raise NotImplementedError("The existing implementation only supports MedMAE. More FMs will be added here.")
if args.finetune and not args.eval:
if 'vit' in args.model:
if args.finetune == "imgnet": # load model from timm pretrained supervised vit
pretrained_model = timm.create_model('vit_base_patch16_224', pretrained=True)
pretrained_model.eval()
checkpoint_model = pretrained_model.state_dict()
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
if args.global_pool:
for k in ['fc_norm.weight', 'fc_norm.bias']:
try:
del checkpoint_model[k]
except:
pass
else: # load pretrained model from the given path
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load pre-trained checkpoint from: %s" % args.finetune)
checkpoint_model = checkpoint['model']
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
if args.global_pool:
for k in ['fc_norm.weight', 'fc_norm.bias']:
try:
del checkpoint_model[k]
except:
pass
# interpolate position embedding
interpolate_pos_embed(model, checkpoint_model)
# load pre-trained model
msg = model.load_state_dict(checkpoint_model, strict=False)
print(msg)
print("Freeze all parameters except head")
# Freeze all the parameters in the model
for param in model.parameters():
param.requires_grad = False
# Unfreeze the parameters in the classifier head
if hasattr(model, 'head'):
for param in model.head.parameters():
param.requires_grad = True
elif hasattr(model, 'classifier'):
for param in model.classifier.parameters():
param.requires_grad = True
else:
raise NameError("The model does not have a recognizable classifier head")
# manually initialize fc layer
trunc_normal_(model.head.weight, std=2e-5)
else:
raise NotImplementedError("Only ViT is supported at this point. More FMs will be added here.")
model_sa = copy.deepcopy(model) # model_sa is the SA classifier
model_sa.to(device)
noise_layer = DNELayer((224,224)).to(device)
model_sa_without_ddp = model_sa
n_parameters = sum(p.numel() for p in model_sa.parameters() if p.requires_grad)
print("Model = %s" % str(model_sa_without_ddp))
print('number of params (M): %.2f' % (n_parameters / 1.e6))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model_sa = torch.nn.parallel.DistributedDataParallel(model_sa, device_ids=[args.gpu])
model_sa_without_ddp = model_sa.module
noise_layer = torch.nn.parallel.DistributedDataParallel(noise_layer, device_ids=[args.gpu])
noise_layer_without_ddp = noise_layer.module
if args.dataset == 'chexpert':
criterion = torch.nn.CrossEntropyLoss()
else:
raise NotImplementedError()
print("criterion = %s" % str(criterion))
# Load the SA classifier
biased_checkpoint = torch.load("./sa_cls.pt", map_location='cpu')
print("Load pre-trained gender classifier from: %s" % "./genderclassifier_ViT_fromMAEXray.pt")
model_sa_state_dict = biased_checkpoint
model_sa = copy.deepcopy(model)
model_sa.load_state_dict(model_sa_state_dict, strict=True)
model_sa.eval()
model_sa.to(device)
# Start training the DNE noise
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
print("======================== Train DNE Epoch {} ========================".format(epoch))
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_dne_gezo(
model_sa,
data_loader_train,
device,
epoch,
log_writer=log_writer,
args=args,
dne_layer=noise_layer
)
torch.save(noise_layer_without_ddp.state_dict(), os.path.join(args.output_dir, "noise_layer.pt"))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)