-
Notifications
You must be signed in to change notification settings - Fork 2
/
fastica.m
532 lines (488 loc) · 18.5 KB
/
fastica.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
function [Out1, Out2, Out3] = fastica(mixedsig, varargin)
%FASTICA - Fast Independent Component Analysis
%
% NOTICE!
% THIS IS NOT THE ORIGINAL VERSION BUT A MODIFIED VERSION:
% this one does not compute the icasig if this is not necessary (otherwise
% there is no change, thus there is (should be) no change in behaviour
% kaigoe ([email protected])
%
% FastICA for Matlab 7.x and 6.x
% Version 2.5, October 19 2005
% Copyright (c) Hugo Gävert, Jarmo Hurri, Jaakko Särelä, and Aapo Hyvärinen.
%
% FASTICA(mixedsig) estimates the independent components from given
% multidimensional signals. Each row of matrix mixedsig is one
% observed signal. FASTICA uses Hyvarinen's fixed-point algorithm,
% see http://www.cis.hut.fi/projects/ica/fastica/. Output from the
% function depends on the number output arguments:
%
% [icasig] = FASTICA (mixedsig); the rows of icasig contain the
% estimated independent components.
%
% [icasig, A, W] = FASTICA (mixedsig); outputs the estimated separating
% matrix W and the corresponding mixing matrix A.
%
% [A, W] = FASTICA (mixedsig); gives only the estimated mixing matrix
% A and the separating matrix W.
%
% Some optional arguments induce other output formats, see below.
%
% A graphical user interface for FASTICA can be launched by the
% command FASTICAG
%
% FASTICA can be called with numerous optional arguments. Optional
% arguments are given in parameter pairs, so that first argument is
% the name of the parameter and the next argument is the value for
% that parameter. Optional parameter pairs can be given in any order.
%
% OPTIONAL PARAMETERS:
%
% Parameter name Values and description
%
%======================================================================
% --Basic parameters in fixed-point algorithm:
%
% 'approach' (string) The decorrelation approach used. Can be
% symmetric ('symm'), i.e. estimate all the
% independent component in parallel, or
% deflation ('defl'), i.e. estimate independent
% component one-by-one like in projection pursuit.
% Default is 'defl'.
%
% 'numOfIC' (integer) Number of independent components to
% be estimated. Default equals the dimension of data.
%
%======================================================================
% --Choosing the nonlinearity:
%
% 'g' (string) Chooses the nonlinearity g used in
% the fixed-point algorithm. Possible values:
%
% Value of 'g': Nonlinearity used:
% 'pow3' (default) g(u)=u^3
% 'tanh' g(u)=tanh(a1*u)
% 'gauss g(u)=u*exp(-a2*u^2/2)
% 'skew' g(u)=u^2
%
% 'finetune' (string) Chooses the nonlinearity g used when
% fine-tuning. In addition to same values
% as for 'g', the possible value 'finetune' is:
% 'off' fine-tuning is disabled.
%
% 'a1' (number) Parameter a1 used when g='tanh'.
% Default is 1.
% 'a2' (number) Parameter a2 used when g='gaus'.
% Default is 1.
%
% 'mu' (number) Step size. Default is 1.
% If the value of mu is other than 1, then the
% program will use the stabilized version of the
% algorithm (see also parameter 'stabilization').
%
%
% 'stabilization' (string) Values 'on' or 'off'. Default 'off'.
% This parameter controls wether the program uses
% the stabilized version of the algorithm or
% not. If the stabilization is on, then the value
% of mu can momentarily be halved if the program
% senses that the algorithm is stuck between two
% points (this is called a stroke). Also if there
% is no convergence before half of the maximum
% number of iterations has been reached then mu
% will be halved for the rest of the rounds.
%
%======================================================================
% --Controlling convergence:
%
% 'epsilon' (number) Stopping criterion. Default is 0.0001.
%
% 'maxNumIterations' (integer) Maximum number of iterations.
% Default is 1000.
%
% 'maxFinetune' (integer) Maximum number of iterations in
% fine-tuning. Default 100.
%
% 'sampleSize' (number) [0 - 1] Percentage of samples used in
% one iteration. Samples are chosen in random.
% Default is 1 (all samples).
%
% 'initGuess' (matrix) Initial guess for A. Default is random.
% You can now do a "one more" like this:
% [ica, A, W] = fastica(mix, 'numOfIC',3);
% [ica2, A2, W2] = fastica(mix, 'initGuess', A, 'numOfIC', 4);
%
%======================================================================
% --Graphics and text output:
%
% 'verbose' (string) Either 'on' or 'off'. Default is
% 'on': report progress of algorithm in text format.
%
% 'displayMode' (string) Plot running estimates of independent
% components: 'signals', 'basis', 'filters' or
% 'off'. Default is 'off'.
%
% 'displayInterval' Number of iterations between plots.
% Default is 1 (plot after every iteration).
%
%======================================================================
% --Controlling reduction of dimension and whitening:
%
% Reduction of dimension is controlled by 'firstEig' and 'lastEig', or
% alternatively by 'interactivePCA'.
%
% 'firstEig' (integer) This and 'lastEig' specify the range for
% eigenvalues that are retained, 'firstEig' is
% the index of largest eigenvalue to be
% retained. Default is 1.
%
% 'lastEig' (integer) This is the index of the last (smallest)
% eigenvalue to be retained. Default equals the
% dimension of data.
%
% 'interactivePCA' (string) Either 'on' or 'off'. When set 'on', the
% eigenvalues are shown to the user and the
% range can be specified interactively. Default
% is 'off'. Can also be set to 'gui'. Then the user
% can use the same GUI that's in FASTICAG.
%
% If you already know the eigenvalue decomposition of the covariance
% matrix, you can avoid computing it again by giving it with the
% following options:
%
% 'pcaE' (matrix) Eigenvectors
% 'pcaD' (matrix) Eigenvalues
%
% If you already know the whitened data, you can give it directly to
% the algorithm using the following options:
%
% 'whiteSig' (matrix) Whitened signal
% 'whiteMat' (matrix) Whitening matrix
% 'dewhiteMat' (matrix) dewhitening matrix
%
% If values for all the 'whiteSig', 'whiteSig' and 'dewhiteMat' are
% supplied, they will be used in computing the ICA. PCA and whitening
% are not performed. Though 'mixedsig' is not used in the main
% algorithm it still must be entered - some values are still
% calculated from it.
%
% Performing preprocessing only is possible by the option:
%
% 'only' (string) Compute only PCA i.e. reduction of
% dimension ('pca') or only PCA plus whitening
% ('white'). Default is 'all': do ICA estimation
% as well. This option changes the output
% format accordingly. For example:
%
% [whitesig, WM, DWM] = FASTICA(mixedsig,
% 'only', 'white')
% returns the whitened signals, the whitening matrix
% (WM) and the dewhitening matrix (DWM). (See also
% WHITENV.) In FastICA the whitening matrix performs
% whitening and the reduction of dimension. Dewhitening
% matrix is the pseudoinverse of whitening matrix.
%
% [E, D] = FASTICA(mixedsig, 'only', 'pca')
% returns the eigenvector (E) and diagonal
% eigenvalue (D) matrices containing the
% selected subspaces.
%
%======================================================================
% EXAMPLES
%
% [icasig] = FASTICA (mixedsig, 'approach', 'symm', 'g', 'tanh');
% Do ICA with tanh nonlinearity and in parallel (like
% maximum likelihood estimation for supergaussian data).
%
% [icasig] = FASTICA (mixedsig, 'lastEig', 10, 'numOfIC', 3);
% Reduce dimension to 10, and estimate only 3
% independent components.
%
% [icasig] = FASTICA (mixedsig, 'verbose', 'off', 'displayMode', 'off');
% Don't output convergence reports and don't plot
% independent components.
%
%
% A graphical user interface for FASTICA can be launched by the
% command FASTICAG
%
% See also FASTICAG
% @(#)$Id$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check some basic requirements of the data
if nargin == 0,
error ('You must supply the mixed data as input argument.');
end
if length (size (mixedsig)) > 2,
error ('Input data can not have more than two dimensions.');
end
if any (any (isnan (mixedsig))),
error ('Input data contains NaN''s.');
end
if ~isa (mixedsig, 'double')
fprintf ('Warning: converting input data into regular (double) precision.\n');
mixedsig = double (mixedsig);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Remove the mean and check the data
[mixedsig, mixedmean] = remmean(mixedsig);
[Dim, NumOfSampl] = size(mixedsig);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Default values for optional parameters
% All
verbose = 'on';
% Default values for 'pcamat' parameters
firstEig = 1;
lastEig = Dim;
interactivePCA = 'off';
% Default values for 'fpica' parameters
approach = 'defl';
numOfIC = Dim;
g = 'pow3';
finetune = 'off';
a1 = 1;
a2 = 1;
myy = 1;
stabilization = 'off';
epsilon = 0.0001;
maxNumIterations = 1000;
maxFinetune = 5;
initState = 'rand';
guess = 0;
sampleSize = 1;
displayMode = 'off';
displayInterval = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameters for fastICA - i.e. this file
b_verbose = 1;
jumpPCA = 0;
jumpWhitening = 0;
only = 3;
userNumOfIC = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Read the optional parameters
if (rem(length(varargin),2)==1)
error('Optional parameters should always go by pairs');
else
for i=1:2:(length(varargin)-1)
if ~ischar (varargin{i}),
error (['Unknown type of optional parameter name (parameter' ...
' names must be strings).']);
end
% change the value of parameter
switch lower (varargin{i})
case 'stabilization'
stabilization = lower (varargin{i+1});
case 'maxfinetune'
maxFinetune = varargin{i+1};
case 'samplesize'
sampleSize = varargin{i+1};
case 'verbose'
verbose = lower (varargin{i+1});
% silence this program also
if strcmp (verbose, 'off'), b_verbose = 0; end
case 'firsteig'
firstEig = varargin{i+1};
case 'lasteig'
lastEig = varargin{i+1};
case 'interactivepca'
interactivePCA = lower (varargin{i+1});
case 'approach'
approach = lower (varargin{i+1});
case 'numofic'
numOfIC = varargin{i+1};
% User has supplied new value for numOfIC.
% We'll use this information later on...
userNumOfIC = 1;
case 'g'
g = lower (varargin{i+1});
case 'finetune'
finetune = lower (varargin{i+1});
case 'a1'
a1 = varargin{i+1};
case 'a2'
a2 = varargin{i+1};
case {'mu', 'myy'}
myy = varargin{i+1};
case 'epsilon'
epsilon = varargin{i+1};
case 'maxnumiterations'
maxNumIterations = varargin{i+1};
case 'initguess'
% no use setting 'guess' if the 'initState' is not set
initState = 'guess';
guess = varargin{i+1};
case 'displaymode'
displayMode = lower (varargin{i+1});
case 'displayinterval'
displayInterval = varargin{i+1};
case 'pcae'
% calculate if there are enought parameters to skip PCA
jumpPCA = jumpPCA + 1;
E = varargin{i+1};
case 'pcad'
% calculate if there are enought parameters to skip PCA
jumpPCA = jumpPCA + 1;
D = varargin{i+1};
case 'whitesig'
% calculate if there are enought parameters to skip PCA and whitening
jumpWhitening = jumpWhitening + 1;
whitesig = varargin{i+1};
case 'whitemat'
% calculate if there are enought parameters to skip PCA and whitening
jumpWhitening = jumpWhitening + 1;
whiteningMatrix = varargin{i+1};
case 'dewhitemat'
% calculate if there are enought parameters to skip PCA and whitening
jumpWhitening = jumpWhitening + 1;
dewhiteningMatrix = varargin{i+1};
case 'only'
% if the user only wants to calculate PCA or...
switch lower (varargin{i+1})
case 'pca'
only = 1;
case 'white'
only = 2;
case 'all'
only = 3;
end
otherwise
% Hmmm, something wrong with the parameter string
error(['Unrecognized parameter: ''' varargin{i} '''']);
end;
end;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% print information about data
if b_verbose
fprintf('Number of signals: %d\n', Dim);
fprintf('Number of samples: %d\n', NumOfSampl);
end
% Check if the data has been entered the wrong way,
% but warn only... it may be on purpose
if Dim > NumOfSampl
if b_verbose
fprintf('Warning: ');
fprintf('The signal matrix may be oriented in the wrong way.\n');
fprintf('In that case transpose the matrix.\n\n');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculating PCA
% We need the results of PCA for whitening, but if we don't
% need to do whitening... then we dont need PCA...
if jumpWhitening == 3
if b_verbose,
fprintf ('Whitened signal and corresponding matrises supplied.\n');
fprintf ('PCA calculations not needed.\n');
end;
else
% OK, so first we need to calculate PCA
% Check to see if we already have the PCA data
if jumpPCA == 2,
if b_verbose,
fprintf ('Values for PCA calculations supplied.\n');
fprintf ('PCA calculations not needed.\n');
end;
else
% display notice if the user entered one, but not both, of E and D.
if (jumpPCA > 0) & (b_verbose),
fprintf ('You must suply all of these in order to jump PCA:\n');
fprintf ('''pcaE'', ''pcaD''.\n');
end;
% Calculate PCA
[E, D]=pcamat(mixedsig, firstEig, lastEig, interactivePCA, verbose);
end
end
% skip the rest if user only wanted PCA
if only > 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Whitening the data
% Check to see if the whitening is needed...
if jumpWhitening == 3,
if b_verbose,
fprintf ('Whitening not needed.\n');
end;
else
% Whitening is needed
% display notice if the user entered some of the whitening info, but not all.
if (jumpWhitening > 0) & (b_verbose),
fprintf ('You must suply all of these in order to jump whitening:\n');
fprintf ('''whiteSig'', ''whiteMat'', ''dewhiteMat''.\n');
end;
% Calculate the whitening
[whitesig, whiteningMatrix, dewhiteningMatrix] = whitenv ...
(mixedsig, E, D, verbose);
end
end % if only > 1
% skip the rest if user only wanted PCA and whitening
if only > 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculating the ICA
% Check some parameters
% The dimension of the data may have been reduced during PCA calculations.
% The original dimension is calculated from the data by default, and the
% number of IC is by default set to equal that dimension.
Dim = size(whitesig, 1);
% The number of IC's must be less or equal to the dimension of data
if numOfIC > Dim
numOfIC = Dim;
% Show warning only if verbose = 'on' and user supplied a value for 'numOfIC'
if (b_verbose & userNumOfIC)
fprintf('Warning: estimating only %d independent components\n', numOfIC);
fprintf('(Can''t estimate more independent components than dimension of data)\n');
end
end
% Calculate the ICA with fixed point algorithm.
[A, W] = fpica (whitesig, whiteningMatrix, dewhiteningMatrix, approach, ...
numOfIC, g, finetune, a1, a2, myy, stabilization, epsilon, ...
maxNumIterations, maxFinetune, initState, guess, sampleSize, ...
displayMode, displayInterval, verbose);
% Check for valid return
% if ~isempty(W) % ORIGINAL VERSION
% MODIFIED VERSION: CHECK ALSO IF ICASIG IS RETURNED AT ALL, before we
% comput it
% CHANGED BY kaigoe ([email protected])
% modified version
if ~isempty(W) ...
&& nargout ~= 2 %% if nargout == 2, we return [W. A], and NOT ICASIG
% Add the mean back in.
if b_verbose
fprintf('Adding the mean back to the data.\n');
end
icasig = W * mixedsig + (W * mixedmean) * ones(1, NumOfSampl);
%icasig = W * mixedsig;
if b_verbose & ...
(max(abs(W * mixedmean)) > 1e-9) & ...
(strcmp(displayMode,'signals') | strcmp(displayMode,'on'))
fprintf('Note that the plots don''t have the mean added.\n');
end
else
icasig = [];
end
end % if only > 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The output depends on the number of output parameters
% and the 'only' parameter.
if only == 1 % only PCA
Out1 = E;
Out2 = D;
elseif only == 2 % only PCA & whitening
if nargout == 2
Out1 = whiteningMatrix;
Out2 = dewhiteningMatrix;
else
Out1 = whitesig;
Out2 = whiteningMatrix;
Out3 = dewhiteningMatrix;
end
else % ICA
if nargout == 2
Out1 = A;
Out2 = W;
else
Out1 = icasig;
Out2 = A;
Out3 = W;
end
end