Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error in stride shape #30

Open
Mxdy21 opened this issue Nov 22, 2024 · 0 comments
Open

Error in stride shape #30

Mxdy21 opened this issue Nov 22, 2024 · 0 comments

Comments

@Mxdy21
Copy link

Mxdy21 commented Nov 22, 2024

Hi,

I noticed an error/warning because of the strides misshape in DDP when you train the architecture ddpmpp, a simple fix for this is to fix the operation in the attention modules contiguously. Here's the error :

params[166] in this process with sizes [256, 256, 1, 1] appears not to match strides of the same param in process 0.

To fix it you need to modify 5 lines of code.
For the AttentionOP modules you modify the backward and forward from :

class AttentionOp(torch.autograd.Function):
    @staticmethod
    def forward(ctx, q, k):
        w = torch.einsum('ncq,nck->nqk', q.to(torch.float32), (k / np.sqrt(k.shape[1])).to(torch.float32)).softmax(dim=2).to(q.dtype)
        ctx.save_for_backward(q, k, w)
        return w

    @staticmethod
    def backward(ctx, dw):
        q, k, w = ctx.saved_tensors
        db = torch._softmax_backward_data(grad_output=dw.to(torch.float32), output=w.to(torch.float32), dim=2, input_dtype=torch.float32)
        dq = torch.einsum('nck,nqk->ncq', k.to(torch.float32), db).to(q.dtype) / np.sqrt(k.shape[1])
        dk = torch.einsum('ncq,nqk->nck', q.to(torch.float32), db).to(k.dtype) / np.sqrt(k.shape[1])
        return dq, dk

to :

class AttentionOp(torch.autograd.Function):
    @staticmethod
    def forward(ctx, q, k):
        w = torch.einsum('ncq,nck->nqk', q.to(torch.float32), (k / np.sqrt(k.shape[1])).to(torch.float32)).softmax(dim=2).to(q.dtype).contiguous()
        ctx.save_for_backward(q, k, w)
        return w

    @staticmethod
    def backward(ctx, dw):
        q, k, w = ctx.saved_tensors
        db = torch._softmax_backward_data(grad_output=dw.to(torch.float32), output=w.to(torch.float32), dim=2, input_dtype=torch.float32).contiguous()
        dq = torch.einsum('nck,nqk->ncq', k.to(torch.float32), db).to(q.dtype).contiguous() / np.sqrt(k.shape[1])
        dk = torch.einsum('ncq,nqk->nck', q.to(torch.float32), db).to(k.dtype).contiguous() / np.sqrt(k.shape[1])
        return dq, dk

and in the UNetBlock module, from :

def forward(self, x, emb):
        orig = x
        x = self.conv0(silu(self.norm0(x)))

        params = self.affine(emb).unsqueeze(2).unsqueeze(3).to(x.dtype)
        if self.adaptive_scale:
            scale, shift = params.chunk(chunks=2, dim=1)
            x = silu(torch.addcmul(shift, self.norm1(x), scale + 1))
        else:
            x = silu(self.norm1(x.add_(params)))

        x = self.conv1(torch.nn.functional.dropout(x, p=self.dropout, training=self.training))
        x = x.add_(self.skip(orig) if self.skip is not None else orig)
        x = x * self.skip_scale

        if self.num_heads:
            q, k, v = self.qkv(self.norm2(x)).reshape(x.shape[0] * self.num_heads, x.shape[1] // self.num_heads, 3, -1).unbind(2)
            w = AttentionOp.apply(q, k)
            a = torch.einsum('nqk,nck->ncq', w, v)
            x = self.proj(a.reshape(*x.shape)).add_(x)
            x = x * self.skip_scale
        return x

to :

    def forward(self, x, emb):
        orig = x
        x = self.conv0(silu(self.norm0(x)))

        params = self.affine(emb).unsqueeze(2).unsqueeze(3).to(x.dtype)
        if self.adaptive_scale:
            scale, shift = params.chunk(chunks=2, dim=1)
            x = silu(torch.addcmul(shift, self.norm1(x), scale + 1))
        else:
            x = silu(self.norm1(x.add_(params)))

        x = self.conv1(torch.nn.functional.dropout(x, p=self.dropout, training=self.training))
        x = x.add_(self.skip(orig) if self.skip is not None else orig)
        x = x * self.skip_scale

        if self.num_heads:
            q, k, v = self.qkv(self.norm2(x)).reshape(x.shape[0] * self.num_heads, x.shape[1] // self.num_heads, 3, -1).unbind(2)
            w = AttentionOp.apply(q, k)
            a = torch.einsum('nqk,nck->ncq', w, v).contiguous()
            x = self.proj(a.reshape(*x.shape)).add_(x)
            x = x * self.skip_scale
        return x

I know that the author find this warning/error and decided to mute it, to solve it you just need those few lines of code

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant