-
Notifications
You must be signed in to change notification settings - Fork 369
Migration Guide from v0.4.x to 0.5.x
Chris Choy edited this page Aug 2, 2020
·
16 revisions
Abbreviated keywords to complete keywords.
import MinkowskiEngine as ME
...
# v0.4.x
sinput = ME.SparseTensor(feats, coords=coords)
manager = sinput.coords_man
key = sinput.coords_key
# v0.5.x
sinput = ME.SparseTensor(feats, coordinates=coords)
manager = sinput.coordinate_manager
key = sinput.coordinate_map_key
In v0.4, the CUDA acceleration was supported for matrix multiplication (convolution), but from v0.5.0a, we provide CUDA backends for kernel map generation. However, to use the CUDA acceleration, you must provide coordinates as a CUDA tensor.
# v0.4.x
sinput = ME.SparseTensor(feats, coords=coords).to(0)
# v0.5.x
# sinput = ME.SparseTensor(feats, coordinates=coords).to(0) # throws an error. Not supported to prevent unnecessary CPU/GPU coordinate map construction
sinput = ME.SparseTensor(feats.to(0), coordinates=coords.to(0))
sinput = ME.SparseTensor(feats, coordinates=coords, device=0)
sinput = ME.SparseTensor(feats, coordinates=coords, device=feats.device)
From v0.5, a new sparse tensor with the same tensor stride, will automatically be created without force_creation=True
argument. Instead, a coordinate map key is a pair of tensor stride and a random string, which will be automatically populated to create a new coordinate map.
Similarly, allow duplicates are no longer required since the duplicates will be automatically resolved using quantization_mode
.
# v0.4
sinput = ME.SparseTensor(feats, coords=coordinates)
sinput2 = ME.SparseTensor(new_feats, coords=new_coordinates, force_create=True, coords_man=sinput.coordinate_manager)
# v0.5
sinput = ME.SparseTensor(feats, coordinates=coordinates)
sinput2 = ME.SparseTensor(new_feats, coordinates=new_coordinates, coordinate_manager=sinput.coordinate_manager)
Use the standard pytorch keywords.
# v0.4.x
conv = ME.MinkowskiConvolution(,... has_bias=False)
# v0.5.x
conv = ME.MinkowskiConvolution(,... bias=False)