diff --git a/content/recruitment_functions_comparison.R b/content/recruitment_functions_comparison.R new file mode 100644 index 0000000..5d964b7 --- /dev/null +++ b/content/recruitment_functions_comparison.R @@ -0,0 +1,161 @@ +source(file.path(getwd(), "content", "run_pollock_tests.R")) +# Function to print arguments +print_arguments <- function(...) { + cat("Following arguments were used:\n\n") + print(list(...)) +} + +# Option 1: Organize function parameters by individual recruitment model parameters -------- +setup_BevertonHolt_recruitment_opt1 <- function(log_rzero, + logit_steep, + log_sigma_recruit, + log_devs) { + recruitment_m <- methods::new(BevertonHoltRecruitment) + + # Set up log_rzero parameters + recruitment_m$log_rzero$value <- log_rzero$value + recruitment_m$log_rzero$estimated <- log_rzero$estimated + recruitment_m$log_rzero$is_random_effect <- log_rzero$is_randome_effect + + # Set up logit_steep parameters + recruitment_m$logit_steep$value <- logit_steep$value + recruitment_m$logit_steep$estimated <- logit_steep$estimated + recruitment_m$logit_steep$is_random_effect <- logit_steep$is_randome_effect + + # Set up log_sigma_recruit parameters + recruitment_m$log_sigma_recruit$value <- log_sigma_recruit$value + recruitment_m$log_sigma_recruit$estimated <- log_sigma_recruit$estimated + recruitment_m$log_sigma_recruit$is_random_effect <- log_sigma_recruit$is_randome_effect + + # Set up log_devs parameters + recruitment_m$log_devs <- log_devs$log_devs + recruitment_m$estimate_log_devs <- log_devs$estimate_log_devs + + # Print the arguments used + print_arguments( + log_rzero = log_rzero, + logit_steep = logit_steep, + log_sigma_recruit = log_sigma_recruit, + log_devs = log_devs + ) + + return(recruitment_m) +} + +# Example: prepare inputs for option 1 +log_rzero <- list( + value = exp(parfinal$mean_log_recruit + log(1e9)), + estimated = TRUE, + is_randome_effect = FALSE +) + +logit_steep <- list( + value = .99999, + estimated = FALSE, + is_randome_effect = FALSE +) + +log_sigma_recruit <- logit_steep +log_sigma_recruit$value <- parfinal$sigmaR + +log_devs <- list( + log_devs = parfinal$dev_log_recruit[-1], + estimate_log_devs = TRUE +) + +# Apply option 1 function +recruitment_opt1 <- setup_BevertonHolt_recruitment_opt1( + log_rzero, + logit_steep, + log_sigma_recruit, + log_devs +) + +# Option 2: organize function parameters by fields of FIMS parameters (using a list of vectors) ----------------------------------------- +setup_BevertonHolt_recruitment_opt2 <- function(recruitment) { + r <- recruitment + recruitment_m <- methods::new(BevertonHoltRecruitment) + recruitment_m$log_sigma_recruit$value <- log(r$init_pars[3]) + recruitment_m$log_rzero$value <- log(r$init_pars[1]) + recruitment_m$log_rzero$is_random_effect <- FALSE + recruitment_m$log_rzero$estimated <- TRUE ## !(1 %in% r$fix_pars) + steep <- r$init_pars[2] + recruitment_m$logit_steep$value <- -log(1.0 - steep) + log(steep - 0.2) + recruitment_m$logit_steep$is_random_effect <- FALSE + recruitment_m$logit_steep$estimated <- FALSE ## !(2 %in% r$fix_pars) + recruitment_m$estimate_log_devs <- TRUE + recruitment_m$log_devs <- r$init_recdevs + print_arguments(recruitment = recruitment) + return(recruitment_m) +} + +# Example: prepare inputs for option 2 +recruitment_inputs_opt2 <- list( + ## R0, steepness, sigmaR + init_pars = c(exp(parfinal$mean_log_recruit + log(1e9)), .99999, parfinal$sigmaR), + fix_pars = c(2:3), + init_recdevs = parfinal$dev_log_recruit[-1], + re = c("none", "none") +) + +# Apply optoin 2 function +recruitment_opt2 <- setup_BevertonHolt_recruitment_opt2(recruitment_inputs_opt2) + +# Option 3: Organize parameters by fields of FIMS parameters (using a list of named lists) ------------------------------------- + +setup_BevertonHolt_recruitment_opt3 <- function(initial_values, is_estimated, is_random_effect) { + recruitment_m <- methods::new(BevertonHoltRecruitment) + + # Set initial parameter values + recruitment_m$log_rzero$value <- initial_values$log_rzero + recruitment_m$logit_steep$value <- initial_values$logit_steep + recruitment_m$log_sigma_recruit$value <- initial_values$log_sigma_recruit + recruitment_m$log_devs <- initial_values$log_devs + + # Set whether each parameter is estimated + recruitment_m$log_rzero$estimated <- is_estimated$log_rzero + recruitment_m$logit_steep$estimated <- is_estimated$logit_steep + recruitment_m$log_sigma_recruit$estimated <- is_estimated$log_sigma_recruit + recruitment_m$estimate_log_devs <- is_estimated$log_devs + + # Set whether each parameter has random effects + recruitment_m$log_rzero$is_random_effect <- is_random_effect$log_rzero + recruitment_m$logit_steep$is_random_effect <- is_random_effect$logit_steep + recruitment_m$log_sigma_recruit$estimated <- is_estimated$log_sigma_recruit + + print_arguments( + initial_values = initial_values, + is_estimated = is_estimated, + is_random_effect = is_random_effect + ) + + return(recruitment_m) +} + +# Example: prepare inputs for option 3 +recruitment_inputs_opt3 <- list( + initial_values = list( + log_rzero = parfinal$mean_log_recruit + log(1e9), + logit_steep = -log(1.0 - .99999) + log(.99999 - 0.2), + log_sigma_recruit = log(parfinal$sigmaR), + log_devs = parfinal$dev_log_recruit[-1] + ), + is_estimated = list( + log_rzero = TRUE, + logit_steep = FALSE, + log_sigma_recruit = FALSE, + log_devs = TRUE + ), + is_random_effect = list( + log_rzero = FALSE, + logit_steep = FALSE, + log_sigma_recruit = FALSE + ) +) + +# Apply option 3 function +recruitment_opt3 <- setup_BevertonHolt_recruitment_opt3( + initial_values = recruitment_ctl$initial_values, + is_estimated = recruitment_ctl$is_estimated, + is_random_effect = recruitment_ctl$is_random_effect +) diff --git a/content/run_pollock_tests_by_fleet.R b/content/run_pollock_tests_by_fleet.R deleted file mode 100644 index e479404..0000000 --- a/content/run_pollock_tests_by_fleet.R +++ /dev/null @@ -1,170 +0,0 @@ -## define the dimensions and global variables -# library(FIMS) -# -# source(file.path(getwd(), "content", "R", "pk_prepare_FIMS_inputs_by_fleet.R")) -# -# years <- 1970:2023 -# nyears <- length(years) -# nseasons <- 1 -# nages <- 10 -# ages <- 1:nages -# source(file.path(getwd(), "content", "R", "pk_prepare_dat.R")) - -# test R functions: approach 1 -------------------------------------------- -clear() -clear_logs() - - - -## make FIMS model -success <- CreateTMBModel() -parameters <- list(p = get_fixed()) -obj3 <- TMB::MakeADFun(data = list(), parameters, DLL = "FIMS", silent = TRUE) -## report values for the two models -rep3 <- obj3$report() - - -clear() -clear_logs() -# source("R/pk_prepare_FIMS_inputs.R") -estimate_fish_selex <- TRUE -estimate_survey_selex <- TRUE -estimate_q2 <- TRUE -estimate_q3 <- TRUE -estimate_q6 <- TRUE -estimate_F <- TRUE -estimate_recdevs <- TRUE -source(file.path(getwd(), "content", "R", "pk_prepare_FIMS_inputs.R")) -## make FIMS model -success <- CreateTMBModel() -parameters <- list(p = get_fixed()) -obj1 <- TMB::MakeADFun(data = list(), parameters, DLL = "FIMS", silent = TRUE) -rep1 <- obj1$report() - -## Parameters are in a different order but seem to match -opt1 <- with(obj1, nlminb(par, fn, gr)) -opt3 <- with(obj3, nlminb(par, fn, gr)) -clear() -clear_logs() - - -## Test that the two models are identical -all.equal(rep1,rep3) -all.equal(obj1$report(opt1$par), obj3$report(opt3$par)) -sum(obj1$par)-sum(obj3$par) - -print(cbind(sort(opt1$par)- sort(opt3$par))) - -# test R functions: approach 2 -------------------------------------------- -# selectivity_double_logistic <- set_selectivity( -# form = "DoubleLogisticSelectivity", -# initial_values = c( -# parfinal$inf1_fsh_mean, exp(parfinal$log_slp1_fsh_mean), -# parfinal$inf2_fsh_mean, exp(parfinal$log_slp2_fsh_mean) -# ), -# is_estimated = rep(TRUE, 4), -# is_random_effect = rep(FALSE, 4) -# ) -# -# selectivity_logistic <- set_selectivity( -# form = "LogisticSelectivity", -# initial_values = c( -# parfinal$inf1_fsh_mean, exp(parfinal$log_slp1_fsh_mean) -# ), -# is_estimated = rep(TRUE, 2), -# is_random_effect = rep(FALSE, 2) -# ) -# -# selectivity <- vector(mode = "list", length = 4) -# selectivity[[1]] <- selectivity[[2]] <- selectivity_double_logistic -# selectivity[[3]] <- selectivity_logistic -# selectivity[[4]] <- selectivity_double_logistic # Order matters because the selectivity modules assign unique IDs. -# -# fleet <- set_fleet( -# data = age_frame, -# is_estimated_obs_error = list(FALSE, FALSE, FALSE, FALSE), -# selectivity_ctl = NULL, -# selectivity_module_list = selectivity, -# Fmort_ctl = list( -# is_survey = list(FALSE, TRUE, TRUE, TRUE), -# estimate_F = list(TRUE, FALSE, FALSE, FALSE), -# random_F = list(FALSE, FALSE, FALSE, FALSE) -# ), -# catchability_ctl = list( -# log_q = list( -# 0, parfinal$log_q2_mean, -# parfinal$log_q3_mean, parfinal$inf1_srv6 -# ), -# estimate_q = list(FALSE, TRUE, TRUE, TRUE), -# random_q = list(FALSE, FALSE, FALSE, FALSE) -# ) -# ) -# -# # Population module -# # recruitment -# recruitment <- set_recruitment( -# form = "BevertonHoltRecruitment", -# initial_values = list( -# log_rzero = parfinal$mean_log_recruit + log(1e9), -# logit_steep = -log(1.0 - .99999) + log(.99999 - 0.2), -# log_sigma_recruit = log(parfinal$sigmaR), -# log_devs = parfinal$dev_log_recruit[-1] -# ), -# is_estimated = list( -# log_rzero = TRUE, -# logit_steep = FALSE, -# log_sigma_recruit = FALSE, -# log_devs = TRUE -# ), -# is_random_effect = list( -# log_rzero = FALSE, -# logit_steep = FALSE, -# log_sigma_recruit = FALSE -# ) -# ) -# -# ## growth -- assumes single WAA vector for everything, based on -# ## Srv1 above -# growth <- set_growth( -# data = population_data, -# form = "EWAAgrowth", -# initial_values = list(weights = pkinput$dat$wt_srv1) -# ) -# ## NOTE: FIMS assumes SSB calculated at the start of the year, so -# ## need to adjust ASAP to do so as well for now, need to make -# ## timing of SSB calculation part of FIMS later -# ## maturity -# ## NOTE: for now tricking FIMS into thinking age 0 is age 1, so need to adjust A50 for maturity because FIMS calculations use ages 0-5+ instead of 1-6 -# maturity <- set_maturity( -# form = maturity_ctl$form, -# initial_values = maturity_ctl$initial_values, -# is_estimated = maturity_ctl$is_estimated, -# is_random_effect = maturity_ctl$is_random_effect -# ) -# -# # population -# population <- set_population( -# data = population_data, -# initial_values = population_initial_values, -# is_estimated = population_is_estimated, -# maturity = maturity, -# growth = growth, -# recruitment = recruitment -# ) -# -# ## make FIMS model -# success <- CreateTMBModel() -# parameters <- list(p = get_fixed()) -# obj4 <- TMB::MakeADFun(data = list(), parameters, DLL = "FIMS", silent = TRUE) -# ## report values for the two models -# rep4 <- obj4$report() -# -# ## Parameters are in a different order but seem to match -# opt4 <- with(obj4, nlminb(par, fn, gr)) -# clear() -# clear_logs() -# # rep4 -# # rm(list = ls()) -# -# ## Test that the two models are identical -# all.equal(rep3, rep4)