-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
caa22ee
commit 5e6be48
Showing
1 changed file
with
116 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
# coding=utf-8 | ||
# Copyright (c) DIRECT Contributors | ||
|
||
"""Tests for the direct.ssl.ssl module.""" | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
|
||
from direct.ssl.ssl import * | ||
|
||
|
||
def create_sample(shape, **kwargs): | ||
sample = dict() | ||
sample["kspace"] = torch.rand(*shape).float() | ||
sample["filename"] = ["filename" + str(_) for _ in np.random.randint(100, 10000, size=shape[0])] | ||
sample["slice_no"] = [_ for _ in np.random.randint(0, 1000, size=shape[0])] | ||
|
||
sample["sampling_mask"] = torch.rand(shape[0], 1, *shape[2:-1], 1).round().bool() | ||
sample["sampling_mask"][ | ||
:, :, shape[2] // 2 - 16 : shape[2] // 2 + 16, shape[3] // 2 - 16 : shape[3] // 2 + 16 | ||
] = True | ||
|
||
sample["acs_mask"] = torch.zeros(shape[0], 1, *shape[2:-1], 1).bool() | ||
sample["acs_mask"][:, :, shape[2] // 2 - 16 : shape[2] // 2 + 16, shape[3] // 2 - 16 : shape[3] // 2 + 16] = True | ||
|
||
for k, v in locals()["kwargs"].items(): | ||
sample[k] = v | ||
return sample | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"shape", | ||
[(1, 3, 40, 60)], | ||
) | ||
@pytest.mark.parametrize( | ||
"ratio", | ||
[0.2, 0.5], | ||
) | ||
@pytest.mark.parametrize( | ||
"acs_region", | ||
[[4, 4], [0, 0], [14, 13]], | ||
) | ||
@pytest.mark.parametrize( | ||
"keep_acs", | ||
[True, False], | ||
) | ||
@pytest.mark.parametrize( | ||
"use_seed", | ||
[True, False], | ||
) | ||
@pytest.mark.parametrize( | ||
"std_scale", | ||
[2.0, 4.0], | ||
) | ||
def test_gaussian_mask_splitter(shape, ratio, acs_region, keep_acs, use_seed, std_scale): | ||
sample = create_sample(shape + (2,)) | ||
splitter = GaussianMaskSplitterModule( | ||
ratio=ratio, | ||
acs_region=acs_region, | ||
keep_acs=keep_acs, | ||
use_seed=use_seed, | ||
kspace_key="kspace", | ||
std_scale=std_scale, | ||
) | ||
sample = splitter(sample) | ||
if not keep_acs: | ||
assert torch.allclose( | ||
sample["theta_sampling_mask"] & sample["lambda_sampling_mask"], torch.zeros_like(sample["sampling_mask"]) | ||
) | ||
assert torch.allclose(sample["theta_sampling_mask"] | sample["lambda_sampling_mask"], sample["sampling_mask"]) | ||
assert torch.allclose( | ||
torch.where( | ||
sample["theta_sampling_mask"], sample["theta_kspace"], sample["lambda_sampling_mask"] * sample["kspace"] | ||
), | ||
(sample["theta_sampling_mask"] | sample["lambda_sampling_mask"]) * sample["kspace"], | ||
) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"shape", | ||
[(1, 3, 40, 60)], | ||
) | ||
@pytest.mark.parametrize( | ||
"ratio", | ||
[0.2, 0.5], | ||
) | ||
@pytest.mark.parametrize( | ||
"acs_region", | ||
[[4, 4], [0, 0], [14, 13]], | ||
) | ||
@pytest.mark.parametrize( | ||
"keep_acs", | ||
[True, False], | ||
) | ||
@pytest.mark.parametrize( | ||
"use_seed", | ||
[True, False], | ||
) | ||
def test_uniform_mask_splitter(shape, ratio, acs_region, keep_acs, use_seed): | ||
sample = create_sample(shape + (2,)) | ||
splitter = UniformMaskSplitterModule( | ||
ratio=ratio, acs_region=acs_region, keep_acs=keep_acs, use_seed=use_seed, kspace_key="kspace" | ||
) | ||
sample = splitter(sample) | ||
if not keep_acs: | ||
assert torch.allclose( | ||
sample["theta_sampling_mask"] & sample["lambda_sampling_mask"], torch.zeros_like(sample["sampling_mask"]) | ||
) | ||
assert torch.allclose(sample["theta_sampling_mask"] | sample["lambda_sampling_mask"], sample["sampling_mask"]) | ||
assert torch.allclose( | ||
torch.where( | ||
sample["theta_sampling_mask"], sample["theta_kspace"], sample["lambda_sampling_mask"] * sample["kspace"] | ||
), | ||
(sample["theta_sampling_mask"] | sample["lambda_sampling_mask"]) * sample["kspace"], | ||
) |