diff --git a/scm/etc/scripts/UFS_case_gen.py b/scm/etc/scripts/UFS_case_gen.py index 7345e956a..9d44e4f6e 100755 --- a/scm/etc/scripts/UFS_case_gen.py +++ b/scm/etc/scripts/UFS_case_gen.py @@ -35,9 +35,15 @@ one_twelfth = 1.0/12.0 two_thirds = 2.0/3.0 +use_oro_for_geos_wind = False #use surface geopotential in the calculation of geostrophic winds (if True, the gradient of geopotential will include the surface geopotential height gradient) +use_actual_geos_wind = False #use geostrophic winds calculated from the large-scale UFS-modeled geopotential (the scale is determined by the modeled winds and the choice of critical Rossby number for which geostrophic balance is assumed to hold) +critical_Rossby = 0.1 #the Rossby number under which geostrophic balance is assumed to be valid (a lower number means a larger horizontal area is required for a given wind speed); geostrophic balance can be assumed when Ro << 1. + +PBL_top_for_geos = 85000.0 # (Pa) when using the mean UFS-modeled winds as geostrophic winds, below this pressure, geostrophic winds return linearly to 0 at the surface + missing_value = -9999.0 #9.99e20 -top_pres_for_forcing = 20000.0 +top_pres_for_forcing = 20000.0 # (Pa) pressure above which to vertically smooth wind profiles to handle noisy model output at upper UFS levels const_nudging_time = 3600.0 @@ -501,7 +507,6 @@ def find_loc_indices_UFS_history(loc, dir): theta = math.atan2(math.sin(math.radians(longitude[i,j] - loc[0]))*math.cos(math.radians(latitude[i,j])), math.cos(math.radians(loc[1]))*math.sin(math.radians(latitude[i,j])) - math.sin(math.radians(loc[1]))*math.cos(math.radians(latitude[i,j]))*math.cos(math.radians(longitude[i,j] - loc[0]))) theta_deg = math.fmod((math.degrees(theta) + 360.0), 360.0) - halo_indices = np.zeros((1+2*n_forcing_halo_points,1+2*n_forcing_halo_points)) if i < n_forcing_halo_points or i > latitude.shape[0]-1-n_forcing_halo_points: message = 'Chosen point too close to the poles for this algorithm' logging.critical(message) @@ -667,11 +672,6 @@ def check_IC_hist_surface_compatibility(dir, i, j, surface_data, lam, old_chgres nc_file = Dataset('{0}/{1}'.format(dir,filename)) - #doublecheck this is correct point - #lon_in = read_NetCDF_var(nc_file, "lon", j, i) - #lat_in = read_NetCDF_var(nc_file, "lat", j, i) - #logging.debug('check_IC_hist_surface_compatibility lon/lat: {}/{}'.format(lon_in, lat_in)) - slmsk_hist = read_NetCDF_surface_var(nc_file, "land", j, i, old_chgres, 0) if (slmsk_hist != surface_data["slmsk"]): @@ -1830,7 +1830,7 @@ def search_in_dict(listin,name): if dictionary["name"] == name: return count -def get_UFS_forcing_data_advective_tendency(dir, i, j, tile, neighbors, dx, dy, nlevs, lam, save_comp_data, vertical_method, geos_wind_forcing, wind_nudge): +def expand_neighbors_for_geostrophic_balance(dir, hist_i, hist_j, neighbors, dx, dy, nlevs, lam): # Determine UFS history file format (tiled/quilted) if lam: @@ -1855,6 +1855,130 @@ def get_UFS_forcing_data_advective_tendency(dir, i, j, tile, neighbors, dx, dy, npts = 2*n_forcing_halo_points+1 + lon = np.zeros((n_filesA,npts,npts)) + lat = np.zeros((n_filesA,npts,npts)) + time = np.zeros((n_filesA)) + u_wind = np.zeros((n_filesA,nlevs,npts,npts)) + v_wind = np.zeros((n_filesA,nlevs,npts,npts)) + wind_speed = np.zeros((n_filesA,nlevs)) + wind_speed_time_mean = np.zeros((nlevs)) + + nc_file = Dataset('{0}/{1}'.format(dir,atm_filenames[0])) + nc_file.set_always_mask(False) + longitude_all = np.asarray(nc_file['lon']) + latitude_all = np.asarray(nc_file['lat']) + nc_file.close() + + #determine average wind speeds in the existing forcing stencil + + # Read in 3D UFS history files + for count, filename in enumerate(atm_filenames, start=1): + nc_file = Dataset('{0}/{1}'.format(dir,filename)) + nc_file.set_always_mask(False) + + time[count-1] = nc_file['time'][0] + + for ii in range(2*n_forcing_halo_points+1): + for jj in range(2*n_forcing_halo_points+1): + current_ii_index = neighbors[0,ii,jj] + current_jj_index = neighbors[1,ii,jj] + + lon[count-1,ii,jj] = nc_file['lon'][current_ii_index,current_jj_index] + lat[count-1,ii,jj] = nc_file['lat'][current_ii_index,current_jj_index] + u_wind[count-1,:,ii,jj] = nc_file['ugrd'][0,::-1,current_ii_index,current_jj_index] + v_wind[count-1,:,ii,jj] = nc_file['vgrd'][0,::-1,current_ii_index,current_jj_index] + + for k in range(nlevs): + wind_speed[count-1,k] = np.sqrt(np.mean(u_wind[count-1,k,:,:])**2 + np.mean(v_wind[count-1,k,:,:]**2)) + + nc_file.close() + + critical_geos_scale_npts = np.zeros((nlevs)) + mean_lat = np.mean(lat[:,:,:]) + coriolis = 2.0*Omega*np.sin(mean_lat*deg_to_rad) + grid_length_scale = np.sqrt(np.mean(dx)**2 + np.mean(dy)**2)*1.0E3 + for k in range(nlevs): + wind_speed_time_mean[k] = np.mean(wind_speed[:,k]) + critical_geos_scale = wind_speed_time_mean[k]/(coriolis*critical_Rossby) + critical_geos_scale_npts[k] = critical_geos_scale/grid_length_scale + floor = np.floor(np.mean(critical_geos_scale_npts)) + ceiling = np.ceil(np.mean(critical_geos_scale_npts)) + if (floor%2 == 1): + odd_pts = int(floor) + else: + odd_pts = int(ceiling) + + message = 'Need {} points for approximate geostrophic balance assuming a Rossby number of {}'.format(odd_pts, critical_Rossby) + logging.debug(message) + + n_geo_halo_points = int((odd_pts - 1)/2) + + if hist_i < n_geo_halo_points or hist_i > latitude_all.shape[0]-1-n_geo_halo_points: + message = 'There are not enough neighboring grid cells between the chosen point and the poles for calculation of geostrophic winds' + logging.critical(message) + raise Exception(message) + else: + #longitude = (n rows of latitude, 2*n columns of longitude), i index increases toward EAST; rows are circles of latitude, columns are meridians + #latitude = (n rows of latitude, 2*n columns of longitude), j index increases toward NORTH; rows are circles of latitude, columns are meridians + new_neighbors = np.mgrid[-n_geo_halo_points:n_geo_halo_points+1,-n_geo_halo_points:n_geo_halo_points+1] + new_neighbors[0,:,:] = new_neighbors[0,:,:] + hist_i + new_neighbors[1,:,:] = new_neighbors[1,:,:] + hist_j + + + # the closest point is near the western edge of the prime meridian, but longitude should be cyclic, so get neighbors on the eastern/western side of the prime meridian as necessary + new_neighbors[1,:,:] = new_neighbors[1,:,:]%longitude_all.shape[1] + + new_neighbors = new_neighbors.astype(int) + #message = 'orig neighbors',neighbors,latitude_all[neighbors[0,:,0],neighbors[1,0,:]],longitude_all[neighbors[0,:,0],neighbors[1,0,:]] + #logging.debug(message) + #message = 'new neighbors',new_neighbors,latitude_all[new_neighbors[0,:,0],new_neighbors[1,0,:]],longitude_all[new_neighbors[0,:,0],new_neighbors[1,0,:]] + #logging.debug(message) + + #calc dx, dy (n_forcing_halo_points*2 x n_forcing_halo_points*2) + new_dx = np.zeros((n_geo_halo_points*2+1,n_geo_halo_points*2)) + new_dy = np.zeros((n_geo_halo_points*2,n_geo_halo_points*2+1)) + for ii in range(2*n_geo_halo_points+1): + for jj in range(2*n_geo_halo_points): + current_ii_index = new_neighbors[0,ii,jj] + current_jj_index = new_neighbors[1,ii,jj] + eastern_jj_index = new_neighbors[1,ii,jj+1] + new_dx[ii,jj] = haversine_distance(latitude_all[current_ii_index,current_jj_index],longitude_all[current_ii_index,current_jj_index],latitude_all[current_ii_index,eastern_jj_index],longitude_all[current_ii_index,eastern_jj_index]) + + for ii in range(2*n_geo_halo_points): + for jj in range(2*n_geo_halo_points+1): + current_ii_index = new_neighbors[0,ii,jj] + northern_ii_index = new_neighbors[0,ii+1,jj] + current_jj_index = new_neighbors[1,ii,jj] + new_dy[ii,jj] = haversine_distance(latitude_all[current_ii_index,current_jj_index],longitude_all[current_ii_index,current_jj_index],latitude_all[northern_ii_index,current_jj_index],longitude_all[northern_ii_index,current_jj_index]) + + return (n_geo_halo_points, new_neighbors, new_dx, new_dy) + +def get_UFS_forcing_data_advective_tendency(dir, i, j, tile, neighbors, dx, dy, nlevs, lam, save_comp_data, vertical_method, geos_wind_forcing, wind_nudge, geo_pts, geo_neighbors, geo_dx, geo_dy, use_actual_geos_wind): + + # Determine UFS history file format (tiled/quilted) + if lam: + atm_ftag = 'atmf*.tile{0}.nc'.format(tile) + sfc_ftag = 'sfcf*.tile{0}.nc'.format(tile) + else: + atm_ftag = '*atmf*.nc' + sfc_ftag = '*sfcf*.nc' + + # Get list of UFS history files with 3D ATMospheric state variables. + atm_filenames = [] + for f_name in os.listdir(dir): + if fnmatch.fnmatch(f_name, atm_ftag): + atm_filenames.append(f_name) + if not atm_filenames: + message = 'No filenames matching the pattern {0} found in {1}'. \ + format(atm_ftag,dir) + logging.critical(message) + raise Exception(message) + atm_filenames = sorted(atm_filenames) + n_filesA = len(atm_filenames) + + npts = 2*n_forcing_halo_points+1 + npts_geo = 2*geo_pts+1 + lon = np.zeros((n_filesA,npts,npts)) lat = np.zeros((n_filesA,npts,npts)) time = np.zeros((n_filesA)) @@ -1867,7 +1991,10 @@ def get_UFS_forcing_data_advective_tendency(dir, i, j, tile, neighbors, dx, dy, presi = np.zeros((n_filesA,nlevs+1)) pressfc = np.zeros((n_filesA,npts,npts)) delz = np.zeros((n_filesA,nlevs,npts,npts)) - #hgtsfc = np.zeros((n_filesA,npts,npts)) + if(geos_wind_forcing and use_actual_geos_wind): + temp_geo = np.zeros((n_filesA,nlevs,npts_geo,npts_geo)) + qv_geo = np.zeros((n_filesA,nlevs,npts_geo,npts_geo)) + hgtsfc = np.zeros((n_filesA,npts,npts)) # Read in 3D UFS history files for count, filename in enumerate(atm_filenames, start=1): @@ -1890,7 +2017,16 @@ def get_UFS_forcing_data_advective_tendency(dir, i, j, tile, neighbors, dx, dy, qv[count-1,:,ii,jj] = nc_file['spfh'][0,::-1,current_ii_index,current_jj_index] pressfc[count-1,ii,jj] = nc_file['pressfc'][0,current_ii_index,current_jj_index] delz[count-1,:,ii,jj] = -1*nc_file['delz'][0,::-1,current_ii_index,current_jj_index] #derive zh - #hgtsfc[count-1,ii,jj] = nc_file['hgtsfc'][0,current_ii_index,current_jj_index] + + if (geos_wind_forcing and use_actual_geos_wind): + for ii in range(npts_geo): + for jj in range(npts_geo): + current_ii_index = geo_neighbors[0,ii,jj] + current_jj_index = geo_neighbors[1,ii,jj] + temp_geo[count-1,:,ii,jj] = nc_file['tmp'][0,::-1,current_ii_index,current_jj_index] + qv_geo[count-1,:,ii,jj] = nc_file['spfh'][0,::-1,current_ii_index,current_jj_index] + hgtsfc[count-1,ii,jj] = nc_file['hgtsfc'][0,current_ii_index,current_jj_index] + pres[count-1,:] = nc_file['pfull'][::-1]*100.0 presi[count-1,:] = nc_file['phalf'][::-1]*100.0 @@ -1915,10 +2051,15 @@ def get_UFS_forcing_data_advective_tendency(dir, i, j, tile, neighbors, dx, dy, v_advec_v = np.zeros((n_filesA,nlevs)) v_advec_T = np.zeros((n_filesA,nlevs)) v_advec_qv = np.zeros((n_filesA,nlevs)) + t_advec_u = np.zeros((n_filesA,nlevs)) + t_advec_v = np.zeros((n_filesA,nlevs)) + t_advec_T = np.zeros((n_filesA,nlevs)) + t_advec_qv = np.zeros((n_filesA,nlevs)) u_g = np.zeros((n_filesA,nlevs)) v_g = np.zeros((n_filesA,nlevs)) - phii = np.zeros((n_filesA,nlevs+1,npts,npts)) - phil = np.zeros((n_filesA,nlevs,npts,npts)) + if(geos_wind_forcing and use_actual_geos_wind): + phii = np.zeros((n_filesA,nlevs+1,npts_geo,npts_geo)) + phil = np.zeros((n_filesA,nlevs,npts_geo,npts_geo)) for t in range(n_filesA): #velocities gets very noisy in the UFS above the tropopause; define a linear return-to-zero profile above some pressure k_p_top = np.where(pres[t,:] <= top_pres_for_forcing)[0][0] @@ -1998,26 +2139,65 @@ def get_UFS_forcing_data_advective_tendency(dir, i, j, tile, neighbors, dx, dy, v_advec_v[t,k] = rho*grav*(w_asc*gradient_v_asc + w_des*gradient_v_des) v_advec_T[t,k] = rho*grav*(w_asc*gradient_T_asc + w_des*gradient_T_des) + adiabatic_exp_comp_term v_advec_qv[t,k] = rho*grav*(w_asc*gradient_qv_asc + w_des*gradient_qv_des) - + if (geos_wind_forcing): - #calc geopotential at interface levels, starting from surface, convert to full pressure levels - for ii in range(npts): - for jj in range(npts): - phii[t,0,ii,jj] = 0.0#hgtsfc[t,ii,jj]*grav #don't need to include orography -- geostrophic winds should assume geopotential over the geoid - for k in range(1,nlevs+1): - phii[t,k,ii,jj] = phii[t,k-1,ii,jj] - rdgas*temp[t,k-1,ii,jj]*(1.0 + zvir*qv[t,k-1,ii,jj])*np.log(presi[t,k]/presi[t,k-1]) - - for k in range(0,nlevs): - phil[t,k,ii,jj] = 0.5*(phii[t,k,ii,jj] + phii[t,k+1,ii,jj]) + coriolis = 2.0*Omega*np.sin(lat[t,center,center]*deg_to_rad) + + if (use_actual_geos_wind): + #calc geopotential at interface levels, starting from surface, convert to full pressure levels + for ii in range(npts_geo): + for jj in range(npts_geo): + if (use_oro_for_geos_wind): + phii[t,0,ii,jj] = hgtsfc[t,ii,jj]*grav + else: + phii[t,0,ii,jj] = 0.0 #don't need to include orography -- geostrophic winds should assume geopotential over the geoid + for k in range(1,nlevs+1): + phii[t,k,ii,jj] = phii[t,k-1,ii,jj] - rdgas*temp_geo[t,k-1,ii,jj]*(1.0 + zvir*qv_geo[t,k-1,ii,jj])*np.log(presi[t,k]/presi[t,k-1]) + + for k in range(0,nlevs): + phil[t,k,ii,jj] = 0.5*(phii[t,k,ii,jj] + phii[t,k+1,ii,jj]) + + for k in range(1,nlevs): + dphidx = np.zeros((npts_geo,npts_geo)) + dphidy = np.zeros((npts_geo,npts_geo)) + #valid points: + #dphidx = np.zeros((npts_geo,npts_geo-2)) + #dphidy = np.zeros((npts_geo-2,npts_geo)) + for ii in range(0,npts_geo): + for jj in range(1,npts_geo-1): + dphidx[ii,jj] = centered_diff_derivative(phil[t,k,ii,jj-1:jj+2],geo_dx[ii,jj-1:jj+1]*1.0E3) + mean_dphidx = np.mean(dphidx[0:npts_geo,1:npts_geo-1]) + + for ii in range(1,npts_geo-1): + for jj in range(0,npts_geo): + dphidy[ii,jj] = centered_diff_derivative(phil[t,k,ii-1:ii+2,jj],geo_dy[ii-1:ii+1,jj]*1.0E3) + mean_dphidy = np.mean(dphidy[1:npts_geo-1,0:npts_geo]) + + u_g[t,k] = -mean_dphidy/coriolis + v_g[t,k] = mean_dphidx/coriolis + else: + for k in range(0,nlevs): + u_g[t,k] = np.mean(u_wind[t,k,:,:]) + v_g[t,k] = np.mean(v_wind[t,k,:,:]) + k_pbl_top = np.where(pres[t,:] <= PBL_top_for_geos)[0][0] + u_g[t,0] = 0.0 + v_g[t,0] = 0.0 + for k in range(1,k_pbl_top): + lifrac = (pres[t,k] - pres[t,0])/(pres[t,k_pbl_top] - pres[t,0]) + u_g[t,k] = lifrac*u_g[t,k_pbl_top] + v_g[t,k] = lifrac*v_g[t,k_pbl_top] - mean_lat = np.mean(lat[t,:,:]) - coriolis = 2.0*Omega*np.sin(mean_lat*deg_to_rad) - for k in range(1,nlevs): - dphidx = centered_diff_derivative(phil[t,k,center,:],dx[center,:]*1.0E3) - dphidy = centered_diff_derivative(phil[t,k,:,center],dy[:,center]*1.0E3) - - u_g[t,k] = -dphidy/coriolis - v_g[t,k] = dphidx/coriolis + + if (vertical_method == 1): + t_advec_T[:,:] = h_advec_T[:,:] + v_advec_T[:,:] + t_advec_qv[:,:] = h_advec_qv[:,:] + v_advec_qv[:,:] + t_advec_u[:,:] = h_advec_u[:,:] + v_advec_u[:,:] + t_advec_v[:,:] = h_advec_v[:,:] + v_advec_v[:,:] + else: + t_advec_T[:,:] = h_advec_T[:,:] + t_advec_qv[:,:] = h_advec_qv[:,:] + t_advec_u[:,:] = h_advec_u[:,:] + t_advec_v[:,:] = h_advec_v[:,:] if (save_comp_data): # Read in 2D UFS history files @@ -2094,10 +2274,10 @@ def get_UFS_forcing_data_advective_tendency(dir, i, j, tile, neighbors, dx, dy, "wa": smoothed_w, "ps_forc": pressfc[:,center,center], "pa_forc": pres, - "tnta_adv": h_advec_T[:,:] + v_advec_T[:,:], - "tnqv_adv": h_advec_qv[:,:] + v_advec_qv[:,:], - "tnua_adv": h_advec_u[:,:] + v_advec_u[:,:], - "tnva_adv": h_advec_v[:,:] + v_advec_v[:,:], + "tnta_adv": t_advec_T[:,:], + "tnqv_adv": t_advec_qv[:,:], + "tnua_adv": t_advec_u[:,:], + "tnva_adv": t_advec_v[:,:], "ug" : u_g[:,:], "vg" : v_g[:,:], "ua_nud" : u_wind[:,:,center,center], @@ -3014,10 +3194,8 @@ def write_SCM_case_file(state, surface, oro, forcing, init, case, date, forcing_ # nc_file.adv_ta = forcing_on nc_file.adv_qv = forcing_on - if (not geos_wind_forcing): - nc_file.adv_ua = forcing_on - nc_file.adv_va = forcing_on - # + nc_file.adv_ua = forcing_on + nc_file.adv_va = forcing_on nc_file.surface_forcing_temp = 'none' nc_file.surface_forcing_moisture = 'none' nc_file.surface_forcing_wind = 'none' @@ -3545,7 +3723,15 @@ def main(): grid_dir, tile, IC_i, IC_j, lam,\ save_comp, exact_mode) elif forcing_method == 2: - (forcing_data, comp_data) = get_UFS_forcing_data_advective_tendency(forcing_dir, hist_i, hist_j, tile, neighbors, dx, dy, state_data["nlevs"], lam, save_comp, vertical_method, geos_wind_forcing, wind_nudge) + geo_pts = n_forcing_halo_points + geo_neighbors = '' + geo_dx = '' + geo_dy = '' + if (geos_wind_forcing and use_actual_geos_wind): + #need to check and potentially get more neighboring data for geostrophic wind (for low enough Rossby numbers where geostrophic balance can be assumed) + (geo_pts, geo_neighbors, geo_dx, geo_dy) = expand_neighbors_for_geostrophic_balance(forcing_dir, hist_i, hist_j, neighbors, dx, dy, state_data["nlevs"], lam) + (forcing_data, comp_data) = get_UFS_forcing_data_advective_tendency(forcing_dir, hist_i, hist_j, tile, neighbors, dx, dy, state_data["nlevs"], lam, save_comp, vertical_method, \ + geos_wind_forcing, wind_nudge, geo_pts, geo_neighbors, geo_dx, geo_dy, use_actual_geos_wind) elif forcing_method == 3: exact_mode = False (forcing_data, comp_data, stateInit) = get_UFS_forcing_data(state_data["nlevs"], state_data, \