diff --git a/README.md b/README.md index d2ec7cba..868dd58b 100644 --- a/README.md +++ b/README.md @@ -10,17 +10,25 @@ a general understanding of python, pip, pytorch, and using virtual environments: Linux: ```bash +git submodule update --init --recursive pythion3 -m venv venv source venv/bin/activate pip install -r requirements.txt +cd requirements/sd-scripts +pip install --no-deps -e . +cd ../.. ``` Windows: ```bash +git submodule update --init --recursive pythion3 -m venv venv venv\Scripts\activate pip install -r requirements.txt +cd requirements/sd-scripts +pip install --no-deps -e . +cd ../.. ``` ## Current Tools diff --git a/config/examples/train.example.json b/config/examples/train.example.json index 8d19812d..761d5780 100644 --- a/config/examples/train.example.json +++ b/config/examples/train.example.json @@ -5,7 +5,11 @@ "base_model": "/path/to/base/model", "training_folder": "/path/to/output/folder", "is_v2": false, - "device": "cpu", + "device": "cuda", + "gradient_accumulation_steps": 1, + "mixed_precision": "fp16", + "logging_dir": "/path/to/tensorboard/log/folder", + "process": [ { "type": "fine_tune" diff --git a/jobs/BaseJob.py b/jobs/BaseJob.py index ae4d0bc5..3d0129df 100644 --- a/jobs/BaseJob.py +++ b/jobs/BaseJob.py @@ -1,3 +1,4 @@ +import importlib from collections import OrderedDict from typing import List @@ -48,6 +49,8 @@ def load_processes(self, process_dict: dict): if len(self.config['process']) == 0: raise ValueError('config file is invalid. "config.process" must be a list of processes') + module = importlib.import_module('jobs.process') + # add the processes self.process = [] for i, process in enumerate(self.config['process']): @@ -56,7 +59,8 @@ def load_processes(self, process_dict: dict): # check if dict key is process type if process['type'] in process_dict: - self.process.append(process_dict[process['type']](i, self, process)) + ProcessClass = getattr(module, process_dict[process['type']]) + self.process.append(ProcessClass(i, self, process)) else: raise ValueError(f'config file is invalid. Unknown process type: {process["type"]}') diff --git a/jobs/ExtractJob.py b/jobs/ExtractJob.py index 99a86fa5..968b7960 100644 --- a/jobs/ExtractJob.py +++ b/jobs/ExtractJob.py @@ -1,19 +1,16 @@ from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint -from .BaseJob import BaseJob from collections import OrderedDict from typing import List from jobs.process import BaseExtractProcess - -from jobs.process import ExtractLoconProcess +from jobs import BaseJob process_dict = { - 'locon': ExtractLoconProcess, + 'locon': 'ExtractLoconProcess', } class ExtractJob(BaseJob): - process: List[BaseExtractProcess] def __init__(self, config: OrderedDict): super().__init__(config) diff --git a/jobs/TrainJob.py b/jobs/TrainJob.py index f898e629..4137200b 100644 --- a/jobs/TrainJob.py +++ b/jobs/TrainJob.py @@ -1,38 +1,85 @@ -from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint -from .BaseJob import BaseJob -from collections import OrderedDict -from typing import List - -from jobs.process import BaseExtractProcess, TrainFineTuneProcess - -process_dict = { - 'fine_tine': TrainFineTuneProcess -} - - -class TrainJob(BaseJob): - process: List[BaseExtractProcess] - - def __init__(self, config: OrderedDict): - super().__init__(config) - self.base_model_path = self.get_conf('base_model', required=True) - self.base_model = None - self.training_folder = self.get_conf('training_folder', required=True) - self.is_v2 = self.get_conf('is_v2', False) - self.device = self.get_conf('device', 'cpu') - - # loads the processes from the config - self.load_processes(process_dict) - - def run(self): - super().run() - # load models - print(f"Loading base model for training") - print(f" - Loading base model: {self.base_model_path}") - self.base_model = load_models_from_stable_diffusion_checkpoint(self.is_v2, self.base_model_path) - - print("") - print(f"Running {len(self.process)} process{'' if len(self.process) == 1 else 'es'}") - - for process in self.process: - process.run() +# from jobs import BaseJob +# from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint +# from collections import OrderedDict +# from typing import List +# from jobs.process import BaseExtractProcess, TrainFineTuneProcess +# import gc +# import time +# import argparse +# import itertools +# import math +# import os +# from multiprocessing import Value +# +# from tqdm import tqdm +# import torch +# from accelerate.utils import set_seed +# from accelerate import Accelerator +# import diffusers +# from diffusers import DDPMScheduler +# +# from toolkit.paths import SD_SCRIPTS_ROOT +# +# import sys +# +# sys.path.append(SD_SCRIPTS_ROOT) +# +# import library.train_util as train_util +# import library.config_util as config_util +# from library.config_util import ( +# ConfigSanitizer, +# BlueprintGenerator, +# ) +# import toolkit.train_tools as train_tools +# import library.custom_train_functions as custom_train_functions +# from library.custom_train_functions import ( +# apply_snr_weight, +# get_weighted_text_embeddings, +# prepare_scheduler_for_custom_training, +# pyramid_noise_like, +# apply_noise_offset, +# scale_v_prediction_loss_like_noise_prediction, +# ) +# +# process_dict = { +# 'fine_tine': 'TrainFineTuneProcess' +# } +# +# +# class TrainJob(BaseJob): +# process: List[BaseExtractProcess] +# +# def __init__(self, config: OrderedDict): +# super().__init__(config) +# self.base_model_path = self.get_conf('base_model', required=True) +# self.base_model = None +# self.training_folder = self.get_conf('training_folder', required=True) +# self.is_v2 = self.get_conf('is_v2', False) +# self.device = self.get_conf('device', 'cpu') +# self.gradient_accumulation_steps = self.get_conf('gradient_accumulation_steps', 1) +# self.mixed_precision = self.get_conf('mixed_precision', False) # fp16 +# self.logging_dir = self.get_conf('logging_dir', None) +# +# # loads the processes from the config +# self.load_processes(process_dict) +# +# # setup accelerator +# self.accelerator = Accelerator( +# gradient_accumulation_steps=self.gradient_accumulation_steps, +# mixed_precision=self.mixed_precision, +# log_with=None if self.logging_dir is None else 'tensorboard', +# logging_dir=self.logging_dir, +# ) +# +# def run(self): +# super().run() +# # load models +# print(f"Loading base model for training") +# print(f" - Loading base model: {self.base_model_path}") +# self.base_model = load_models_from_stable_diffusion_checkpoint(self.is_v2, self.base_model_path) +# +# print("") +# print(f"Running {len(self.process)} process{'' if len(self.process) == 1 else 'es'}") +# +# for process in self.process: +# process.run() diff --git a/jobs/__init__.py b/jobs/__init__.py index 9c2472f6..09be1770 100644 --- a/jobs/__init__.py +++ b/jobs/__init__.py @@ -1,3 +1,2 @@ from .BaseJob import BaseJob from .ExtractJob import ExtractJob -from .TrainJob import TrainJob diff --git a/jobs/process/BaseExtractProcess.py b/jobs/process/BaseExtractProcess.py index 1f141bb5..6140e0e8 100644 --- a/jobs/process/BaseExtractProcess.py +++ b/jobs/process/BaseExtractProcess.py @@ -3,13 +3,13 @@ from safetensors.torch import save_file -from jobs import ExtractJob from jobs.process.BaseProcess import BaseProcess from toolkit.metadata import get_meta_for_safetensors +from typing import ForwardRef + class BaseExtractProcess(BaseProcess): - job: ExtractJob process_id: int config: OrderedDict output_folder: str @@ -19,7 +19,7 @@ class BaseExtractProcess(BaseProcess): def __init__( self, process_id: int, - job: ExtractJob, + job, config: OrderedDict ): super().__init__(process_id, job, config) diff --git a/jobs/process/BaseProcess.py b/jobs/process/BaseProcess.py index a09de583..5dab3337 100644 --- a/jobs/process/BaseProcess.py +++ b/jobs/process/BaseProcess.py @@ -1,8 +1,7 @@ import copy import json from collections import OrderedDict - -from jobs import BaseJob +from typing import ForwardRef class BaseProcess: @@ -11,7 +10,7 @@ class BaseProcess: def __init__( self, process_id: int, - job: BaseJob, + job: 'BaseJob', config: OrderedDict ): self.process_id = process_id @@ -40,3 +39,5 @@ def run(self): def add_meta(self, additional_meta: OrderedDict): self.meta.update(additional_meta) + +from jobs import BaseJob diff --git a/jobs/process/BaseTrainProcess.py b/jobs/process/BaseTrainProcess.py index ba1beac2..cac0335e 100644 --- a/jobs/process/BaseTrainProcess.py +++ b/jobs/process/BaseTrainProcess.py @@ -1,17 +1,15 @@ from collections import OrderedDict -from jobs import TrainJob from jobs.process.BaseProcess import BaseProcess class BaseTrainProcess(BaseProcess): - job: TrainJob process_id: int config: OrderedDict def __init__( self, process_id: int, - job: TrainJob, + job, config: OrderedDict ): super().__init__(process_id, job, config) diff --git a/jobs/process/ExtractLoconProcess.py b/jobs/process/ExtractLoconProcess.py index ba2d039f..9741bc5d 100644 --- a/jobs/process/ExtractLoconProcess.py +++ b/jobs/process/ExtractLoconProcess.py @@ -1,7 +1,6 @@ from collections import OrderedDict from toolkit.lycoris_utils import extract_diff from .BaseExtractProcess import BaseExtractProcess -from .. import ExtractJob mode_dict = { 'fixed': { @@ -28,7 +27,7 @@ class ExtractLoconProcess(BaseExtractProcess): - def __init__(self, process_id: int, job: ExtractJob, config: OrderedDict): + def __init__(self, process_id: int, job, config: OrderedDict): super().__init__(process_id, job, config) self.mode = self.get_conf('mode', 'fixed') self.use_sparse_bias = self.get_conf('use_sparse_bias', False) diff --git a/requirements.txt b/requirements.txt index f5389336..b2c6fe65 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,4 +3,5 @@ safetensors diffusers transformers lycoris_lora -flatten_json \ No newline at end of file +flatten_json +accelerator diff --git a/run.py b/run.py index e269bbb6..04730fff 100644 --- a/run.py +++ b/run.py @@ -1,9 +1,5 @@ import os import sys -from collections import OrderedDict - -from jobs import BaseJob - sys.path.insert(0, os.getcwd()) import argparse from toolkit.job import get_job @@ -49,6 +45,8 @@ def main(): jobs_completed = 0 jobs_failed = 0 + print(f"Running {len(config_file_list)} job{'' if len(config_file_list) == 1 else 's'}") + for config_file in config_file_list: try: job = get_job(config_file) diff --git a/scripts/train_dreambooth.py b/scripts/train_dreambooth.py new file mode 100644 index 00000000..8442ddeb --- /dev/null +++ b/scripts/train_dreambooth.py @@ -0,0 +1,547 @@ +import gc +import time +import argparse +import itertools +import math +import os +from multiprocessing import Value + +from tqdm import tqdm +import torch +from accelerate.utils import set_seed +import diffusers +from diffusers import DDPMScheduler + +import library.train_util as train_util +import library.config_util as config_util +from library.config_util import ( + ConfigSanitizer, + BlueprintGenerator, +) +import custom_tools.train_tools as train_tools +import library.custom_train_functions as custom_train_functions +from library.custom_train_functions import ( + apply_snr_weight, + get_weighted_text_embeddings, + prepare_scheduler_for_custom_training, + pyramid_noise_like, + apply_noise_offset, + scale_v_prediction_loss_like_noise_prediction, +) + +# perlin_noise, + +PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) +SD_SCRIPTS_ROOT = os.path.join(PROJECT_ROOT, "repositories", "sd-scripts") + + +def train(args): + train_util.verify_training_args(args) + train_util.prepare_dataset_args(args, False) + + cache_latents = args.cache_latents + + if args.seed is not None: + set_seed(args.seed) # 乱数系列を初期化する + + tokenizer = train_util.load_tokenizer(args) + + # データセットを準備する + if args.dataset_class is None: + blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, False, True)) + if args.dataset_config is not None: + print(f"Load dataset config from {args.dataset_config}") + user_config = config_util.load_user_config(args.dataset_config) + ignored = ["train_data_dir", "reg_data_dir"] + if any(getattr(args, attr) is not None for attr in ignored): + print( + "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( + ", ".join(ignored) + ) + ) + else: + user_config = { + "datasets": [ + {"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)} + ] + } + + blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer) + train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) + else: + train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer) + + current_epoch = Value("i", 0) + current_step = Value("i", 0) + ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None + collater = train_util.collater_class(current_epoch, current_step, ds_for_collater) + + if args.no_token_padding: + train_dataset_group.disable_token_padding() + + if args.debug_dataset: + train_util.debug_dataset(train_dataset_group) + return + + if cache_latents: + assert ( + train_dataset_group.is_latent_cacheable() + ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" + + # replace captions with names + if args.name_replace is not None: + print(f"Replacing captions [name] with '{args.name_replace}'") + + train_dataset_group = train_tools.replace_filewords_in_dataset_group( + train_dataset_group, args + ) + + # acceleratorを準備する + print("prepare accelerator") + + if args.gradient_accumulation_steps > 1: + print( + f"gradient_accumulation_steps is {args.gradient_accumulation_steps}. accelerate does not support gradient_accumulation_steps when training multiple models (U-Net and Text Encoder), so something might be wrong" + ) + print( + f"gradient_accumulation_stepsが{args.gradient_accumulation_steps}に設定されています。accelerateは複数モデル(U-NetおよびText Encoder)の学習時にgradient_accumulation_stepsをサポートしていないため結果は未知数です" + ) + + accelerator, unwrap_model = train_util.prepare_accelerator(args) + + # mixed precisionに対応した型を用意しておき適宜castする + weight_dtype, save_dtype = train_util.prepare_dtype(args) + + # モデルを読み込む + text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype, accelerator) + + # verify load/save model formats + if load_stable_diffusion_format: + src_stable_diffusion_ckpt = args.pretrained_model_name_or_path + src_diffusers_model_path = None + else: + src_stable_diffusion_ckpt = None + src_diffusers_model_path = args.pretrained_model_name_or_path + + if args.save_model_as is None: + save_stable_diffusion_format = load_stable_diffusion_format + use_safetensors = args.use_safetensors + else: + save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors" + use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower()) + + # モデルに xformers とか memory efficient attention を組み込む + train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers) + + # 学習を準備する + if cache_latents: + vae.to(accelerator.device, dtype=weight_dtype) + vae.requires_grad_(False) + vae.eval() + with torch.no_grad(): + train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process) + vae.to("cpu") + if torch.cuda.is_available(): + torch.cuda.empty_cache() + gc.collect() + + accelerator.wait_for_everyone() + + # 学習を準備する:モデルを適切な状態にする + train_text_encoder = args.stop_text_encoder_training is None or args.stop_text_encoder_training >= 0 + unet.requires_grad_(True) # 念のため追加 + text_encoder.requires_grad_(train_text_encoder) + if not train_text_encoder: + print("Text Encoder is not trained.") + + if args.gradient_checkpointing: + unet.enable_gradient_checkpointing() + text_encoder.gradient_checkpointing_enable() + + if not cache_latents: + vae.requires_grad_(False) + vae.eval() + vae.to(accelerator.device, dtype=weight_dtype) + + # 学習に必要なクラスを準備する + print("prepare optimizer, data loader etc.") + if train_text_encoder: + trainable_params = itertools.chain(unet.parameters(), text_encoder.parameters()) + else: + trainable_params = unet.parameters() + + _, _, optimizer = train_util.get_optimizer(args, trainable_params) + + # dataloaderを準備する + # DataLoaderのプロセス数:0はメインプロセスになる + n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで + train_dataloader = torch.utils.data.DataLoader( + train_dataset_group, + batch_size=1, + shuffle=True, + collate_fn=collater, + num_workers=n_workers, + persistent_workers=args.persistent_data_loader_workers, + ) + + # 学習ステップ数を計算する + if args.max_train_epochs is not None: + args.max_train_steps = args.max_train_epochs * math.ceil( + len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps + ) + print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}") + + # データセット側にも学習ステップを送信 + train_dataset_group.set_max_train_steps(args.max_train_steps) + + if args.stop_text_encoder_training is None: + args.stop_text_encoder_training = args.max_train_steps + 1 # do not stop until end + + # lr schedulerを用意する TODO gradient_accumulation_stepsの扱いが何かおかしいかもしれない。後で確認する + lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) + + # 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする + if args.full_fp16: + assert ( + args.mixed_precision == "fp16" + ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" + print("enable full fp16 training.") + unet.to(weight_dtype) + text_encoder.to(weight_dtype) + + # acceleratorがなんかよろしくやってくれるらしい + if train_text_encoder: + unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + unet, text_encoder, optimizer, train_dataloader, lr_scheduler + ) + else: + unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler) + + # transform DDP after prepare + text_encoder, unet = train_util.transform_if_model_is_DDP(text_encoder, unet) + + if not train_text_encoder: + text_encoder.to(accelerator.device, dtype=weight_dtype) # to avoid 'cpu' vs 'cuda' error + + # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする + if args.full_fp16: + train_util.patch_accelerator_for_fp16_training(accelerator) + + # resumeする + train_util.resume_from_local_or_hf_if_specified(accelerator, args) + + # epoch数を計算する + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): + args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 + + # 学習する + total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps + print("running training / 学習開始") + print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") + print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") + print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") + print(f" num epochs / epoch数: {num_train_epochs}") + print(f" batch size per device / バッチサイズ: {args.train_batch_size}") + print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}") + print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") + print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") + + progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") + global_step = 0 + + noise_scheduler = DDPMScheduler( + beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False + ) + prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device) + + if accelerator.is_main_process: + accelerator.init_trackers("dreambooth" if args.log_tracker_name is None else args.log_tracker_name) + + if args.sample_first or args.sample_only: + # Do initial sample before starting training + train_tools.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizer, + text_encoder, unet, force_sample=True) + + if args.sample_only: + return + loss_list = [] + loss_total = 0.0 + for epoch in range(num_train_epochs): + print(f"\nepoch {epoch+1}/{num_train_epochs}") + current_epoch.value = epoch + 1 + + # 指定したステップ数までText Encoderを学習する:epoch最初の状態 + unet.train() + # train==True is required to enable gradient_checkpointing + if args.gradient_checkpointing or global_step < args.stop_text_encoder_training: + text_encoder.train() + + for step, batch in enumerate(train_dataloader): + current_step.value = global_step + # 指定したステップ数でText Encoderの学習を止める + if global_step == args.stop_text_encoder_training: + print(f"stop text encoder training at step {global_step}") + if not args.gradient_checkpointing: + text_encoder.train(False) + text_encoder.requires_grad_(False) + + with accelerator.accumulate(unet): + with torch.no_grad(): + # latentに変換 + if cache_latents: + latents = batch["latents"].to(accelerator.device) + else: + latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() + latents = latents * 0.18215 + b_size = latents.shape[0] + + # Sample noise that we'll add to the latents + if args.train_noise_seed is not None: + torch.manual_seed(args.train_noise_seed) + torch.cuda.manual_seed(args.train_noise_seed) + # make same seed for each item in the batch by stacking them + single_noise = torch.randn_like(latents[0]) + noise = torch.stack([single_noise for _ in range(b_size)]) + noise = noise.to(latents.device) + elif args.seed_lock: + noise = train_tools.get_noise_from_latents(latents) + else: + noise = torch.randn_like(latents, device=latents.device) + + if args.noise_offset: + noise = apply_noise_offset(latents, noise, args.noise_offset, args.adaptive_noise_scale) + elif args.multires_noise_iterations: + noise = pyramid_noise_like(noise, latents.device, args.multires_noise_iterations, args.multires_noise_discount) + # elif args.perlin_noise: + # noise = perlin_noise(noise, latents.device, args.perlin_noise) # only shape of noise is used currently + + # Get the text embedding for conditioning + with torch.set_grad_enabled(global_step < args.stop_text_encoder_training): + if args.weighted_captions: + encoder_hidden_states = get_weighted_text_embeddings( + tokenizer, + text_encoder, + batch["captions"], + accelerator.device, + args.max_token_length // 75 if args.max_token_length else 1, + clip_skip=args.clip_skip, + ) + else: + input_ids = batch["input_ids"].to(accelerator.device) + encoder_hidden_states = train_util.get_hidden_states( + args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype + ) + + # Sample a random timestep for each image + timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) + timesteps = timesteps.long() + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + + # Predict the noise residual + with accelerator.autocast(): + noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample + + if args.v_parameterization: + # v-parameterization training + target = noise_scheduler.get_velocity(latents, noise, timesteps) + else: + target = noise + + loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none") + loss = loss.mean([1, 2, 3]) + + loss_weights = batch["loss_weights"] # 各sampleごとのweight + loss = loss * loss_weights + + if args.min_snr_gamma: + loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma) + if args.scale_v_pred_loss_like_noise_pred: + loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler) + + loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし + + accelerator.backward(loss) + if accelerator.sync_gradients and args.max_grad_norm != 0.0: + if train_text_encoder: + params_to_clip = itertools.chain(unet.parameters(), text_encoder.parameters()) + else: + params_to_clip = unet.parameters() + accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad(set_to_none=True) + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + progress_bar.update(1) + global_step += 1 + + train_util.sample_images( + accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet + ) + + # 指定ステップごとにモデルを保存 + if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: + accelerator.wait_for_everyone() + if accelerator.is_main_process: + src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path + train_util.save_sd_model_on_epoch_end_or_stepwise( + args, + False, + accelerator, + src_path, + save_stable_diffusion_format, + use_safetensors, + save_dtype, + epoch, + num_train_epochs, + global_step, + unwrap_model(text_encoder), + unwrap_model(unet), + vae, + ) + + current_loss = loss.detach().item() + if args.logging_dir is not None: + logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])} + if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower(): # tracking d*lr value + logs["lr/d*lr"] = ( + lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"] + ) + accelerator.log(logs, step=global_step) + + if epoch == 0: + loss_list.append(current_loss) + else: + loss_total -= loss_list[step] + loss_list[step] = current_loss + loss_total += current_loss + avr_loss = loss_total / len(loss_list) + logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} + progress_bar.set_postfix(**logs) + + if global_step >= args.max_train_steps: + break + + if args.logging_dir is not None: + logs = {"loss/epoch": loss_total / len(loss_list)} + accelerator.log(logs, step=epoch + 1) + + accelerator.wait_for_everyone() + + if args.save_every_n_epochs is not None: + if accelerator.is_main_process: + # checking for saving is in util + src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path + train_util.save_sd_model_on_epoch_end_or_stepwise( + args, + True, + accelerator, + src_path, + save_stable_diffusion_format, + use_safetensors, + save_dtype, + epoch, + num_train_epochs, + global_step, + unwrap_model(text_encoder), + unwrap_model(unet), + vae, + ) + + train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) + + is_main_process = accelerator.is_main_process + if is_main_process: + unet = unwrap_model(unet) + text_encoder = unwrap_model(text_encoder) + + accelerator.end_training() + + if args.save_state and is_main_process: + train_util.save_state_on_train_end(args, accelerator) + + del accelerator # この後メモリを使うのでこれは消す + + if is_main_process: + src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path + train_util.save_sd_model_on_train_end( + args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae + ) + print("model saved.") + + +def setup_parser() -> argparse.ArgumentParser: + parser = argparse.ArgumentParser() + + train_util.add_sd_models_arguments(parser) + train_util.add_dataset_arguments(parser, True, False, True) + train_util.add_training_arguments(parser, True) + train_util.add_sd_saving_arguments(parser) + train_util.add_optimizer_arguments(parser) + config_util.add_config_arguments(parser) + custom_train_functions.add_custom_train_arguments(parser) + + parser.add_argument( + "--no_token_padding", + action="store_true", + help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)", + ) + parser.add_argument( + "--stop_text_encoder_training", + type=int, + default=None, + help="steps to stop text encoder training, -1 for no training / Text Encoderの学習を止めるステップ数、-1で最初から学習しない", + ) + + parser.add_argument( + "--sample_first", + action="store_true", + help="Sample first interval before training", + default=False + ) + + parser.add_argument( + "--name_replace", + type=str, + help="Replaces [name] in prompts. Used is sampling, training, and regs", + default=None + ) + + parser.add_argument( + "--train_noise_seed", + type=int, + help="Use custom seed for training noise", + default=None + ) + + parser.add_argument( + "--sample_only", + action="store_true", + help="Only generate samples. Used for generating training data with specific seeds to alter during training", + default=False + ) + + parser.add_argument( + "--seed_lock", + action="store_true", + help="Locks the seed to the latent images so the same latent will always have the same noise", + default=False + ) + + return parser + + +if __name__ == "__main__": + parser = setup_parser() + + args = parser.parse_args() + args = train_util.read_config_from_file(args, parser) + + train(args) diff --git a/toolkit/job.py b/toolkit/job.py index 2d497f57..2991cc5a 100644 --- a/toolkit/job.py +++ b/toolkit/job.py @@ -1,8 +1,7 @@ -from jobs import BaseJob from toolkit.config import get_config -def get_job(config_path) -> BaseJob: +def get_job(config_path): config = get_config(config_path) if not config['job']: raise ValueError('config file is invalid. Missing "job" key') @@ -11,8 +10,8 @@ def get_job(config_path) -> BaseJob: if job == 'extract': from jobs import ExtractJob return ExtractJob(config) - elif job == 'train': - from jobs import TrainJob - return TrainJob(config) + # elif job == 'train': + # from jobs import TrainJob + # return TrainJob(config) else: raise ValueError(f'Unknown job type {job}') diff --git a/toolkit/paths.py b/toolkit/paths.py index 01e15ffc..d6ee1fe4 100644 --- a/toolkit/paths.py +++ b/toolkit/paths.py @@ -2,3 +2,4 @@ TOOLKIT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) CONFIG_ROOT = os.path.join(TOOLKIT_ROOT, 'config') +SD_SCRIPTS_ROOT = os.path.join(TOOLKIT_ROOT, "repositories", "sd-scripts") diff --git a/toolkit/train_tools.py b/toolkit/train_tools.py new file mode 100644 index 00000000..bd4b4075 --- /dev/null +++ b/toolkit/train_tools.py @@ -0,0 +1,361 @@ +import argparse +import json +import os +import time + +from diffusers import ( + StableDiffusionPipeline, + DDPMScheduler, + EulerAncestralDiscreteScheduler, + DPMSolverMultistepScheduler, + DPMSolverSinglestepScheduler, + LMSDiscreteScheduler, + PNDMScheduler, + DDIMScheduler, + EulerDiscreteScheduler, + HeunDiscreteScheduler, + KDPM2DiscreteScheduler, + KDPM2AncestralDiscreteScheduler, +) +from library.lpw_stable_diffusion import StableDiffusionLongPromptWeightingPipeline +import torch +import re + +SCHEDULER_LINEAR_START = 0.00085 +SCHEDULER_LINEAR_END = 0.0120 +SCHEDULER_TIMESTEPS = 1000 +SCHEDLER_SCHEDULE = "scaled_linear" + + +def replace_filewords_prompt(prompt, args: argparse.Namespace): + # if name_replace attr in args (may not be) + if hasattr(args, "name_replace") and args.name_replace is not None: + # replace [name] to args.name_replace + prompt = prompt.replace("[name]", args.name_replace) + if hasattr(args, "prepend") and args.prepend is not None: + # prepend to every item in prompt file + prompt = args.prepend + ' ' + prompt + if hasattr(args, "append") and args.append is not None: + # append to every item in prompt file + prompt = prompt + ' ' + args.append + return prompt + + +def replace_filewords_in_dataset_group(dataset_group, args: argparse.Namespace): + # if name_replace attr in args (may not be) + if hasattr(args, "name_replace") and args.name_replace is not None: + if not len(dataset_group.image_data) > 0: + # throw error + raise ValueError("dataset_group.image_data is empty") + for key in dataset_group.image_data: + dataset_group.image_data[key].caption = dataset_group.image_data[key].caption.replace( + "[name]", args.name_replace) + + return dataset_group + + +def get_seeds_from_latents(latents): + # latents shape = (batch_size, 4, height, width) + # for speed we only use 8x8 slice of the first channel + seeds = [] + + # split batch up + for i in range(latents.shape[0]): + # use only first channel, multiply by 255 and convert to int + tensor = latents[i, 0, :, :] * 255.0 # shape = (height, width) + # slice 8x8 + tensor = tensor[:8, :8] + # clip to 0-255 + tensor = torch.clamp(tensor, 0, 255) + # convert to 8bit int + tensor = tensor.to(torch.uint8) + # convert to bytes + tensor_bytes = tensor.cpu().numpy().tobytes() + # hash + hash_object = hashlib.sha256(tensor_bytes) + # get hex + hex_dig = hash_object.hexdigest() + # convert to int + seed = int(hex_dig, 16) % (2 ** 32) + # append + seeds.append(seed) + return seeds + + +def get_noise_from_latents(latents): + seed_list = get_seeds_from_latents(latents) + noise = [] + for seed in seed_list: + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + noise.append(torch.randn_like(latents[0])) + return torch.stack(noise) + + +# mix 0 is completely noise mean, mix 1 is completely target mean + +def match_noise_to_target_mean_offset(noise, target, mix=0.5, dim=None): + dim = dim or (1, 2, 3) + # reduce mean of noise on dim 2, 3, keeping 0 and 1 intact + noise_mean = noise.mean(dim=dim, keepdim=True) + target_mean = target.mean(dim=dim, keepdim=True) + + new_noise_mean = mix * target_mean + (1 - mix) * noise_mean + + noise = noise - noise_mean + new_noise_mean + return noise + + +def sample_images( + accelerator, + args: argparse.Namespace, + epoch, + steps, + device, + vae, + tokenizer, + text_encoder, + unet, + prompt_replacement=None, + force_sample=False +): + """ + StableDiffusionLongPromptWeightingPipelineの改造版を使うようにしたので、clip skipおよびプロンプトの重みづけに対応した + """ + if not force_sample: + if args.sample_every_n_steps is None and args.sample_every_n_epochs is None: + return + if args.sample_every_n_epochs is not None: + # sample_every_n_steps は無視する + if epoch is None or epoch % args.sample_every_n_epochs != 0: + return + else: + if steps % args.sample_every_n_steps != 0 or epoch is not None: # steps is not divisible or end of epoch + return + + is_sample_only = args.sample_only + is_generating_only = hasattr(args, "is_generating_only") and args.is_generating_only + + print(f"\ngenerating sample images at step / サンプル画像生成 ステップ: {steps}") + if not os.path.isfile(args.sample_prompts): + print(f"No prompt file / プロンプトファイルがありません: {args.sample_prompts}") + return + + org_vae_device = vae.device # CPUにいるはず + vae.to(device) + + # read prompts + + # with open(args.sample_prompts, "rt", encoding="utf-8") as f: + # prompts = f.readlines() + + if args.sample_prompts.endswith(".txt"): + with open(args.sample_prompts, "r", encoding="utf-8") as f: + lines = f.readlines() + prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"] + elif args.sample_prompts.endswith(".json"): + with open(args.sample_prompts, "r", encoding="utf-8") as f: + prompts = json.load(f) + + # schedulerを用意する + sched_init_args = {} + if args.sample_sampler == "ddim": + scheduler_cls = DDIMScheduler + elif args.sample_sampler == "ddpm": # ddpmはおかしくなるのでoptionから外してある + scheduler_cls = DDPMScheduler + elif args.sample_sampler == "pndm": + scheduler_cls = PNDMScheduler + elif args.sample_sampler == "lms" or args.sample_sampler == "k_lms": + scheduler_cls = LMSDiscreteScheduler + elif args.sample_sampler == "euler" or args.sample_sampler == "k_euler": + scheduler_cls = EulerDiscreteScheduler + elif args.sample_sampler == "euler_a" or args.sample_sampler == "k_euler_a": + scheduler_cls = EulerAncestralDiscreteScheduler + elif args.sample_sampler == "dpmsolver" or args.sample_sampler == "dpmsolver++": + scheduler_cls = DPMSolverMultistepScheduler + sched_init_args["algorithm_type"] = args.sample_sampler + elif args.sample_sampler == "dpmsingle": + scheduler_cls = DPMSolverSinglestepScheduler + elif args.sample_sampler == "heun": + scheduler_cls = HeunDiscreteScheduler + elif args.sample_sampler == "dpm_2" or args.sample_sampler == "k_dpm_2": + scheduler_cls = KDPM2DiscreteScheduler + elif args.sample_sampler == "dpm_2_a" or args.sample_sampler == "k_dpm_2_a": + scheduler_cls = KDPM2AncestralDiscreteScheduler + else: + scheduler_cls = DDIMScheduler + + if args.v_parameterization: + sched_init_args["prediction_type"] = "v_prediction" + + scheduler = scheduler_cls( + num_train_timesteps=SCHEDULER_TIMESTEPS, + beta_start=SCHEDULER_LINEAR_START, + beta_end=SCHEDULER_LINEAR_END, + beta_schedule=SCHEDLER_SCHEDULE, + **sched_init_args, + ) + + # clip_sample=Trueにする + if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is False: + # print("set clip_sample to True") + scheduler.config.clip_sample = True + + pipeline = StableDiffusionLongPromptWeightingPipeline( + text_encoder=text_encoder, + vae=vae, + unet=unet, + tokenizer=tokenizer, + scheduler=scheduler, + clip_skip=args.clip_skip, + safety_checker=None, + feature_extractor=None, + requires_safety_checker=False, + ) + pipeline.to(device) + + if is_generating_only: + save_dir = args.output_dir + else: + save_dir = args.output_dir + "/sample" + os.makedirs(save_dir, exist_ok=True) + + rng_state = torch.get_rng_state() + cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None + + with torch.no_grad(): + with accelerator.autocast(): + for i, prompt in enumerate(prompts): + if not accelerator.is_main_process: + continue + + if isinstance(prompt, dict): + negative_prompt = prompt.get("negative_prompt") + sample_steps = prompt.get("sample_steps", 30) + width = prompt.get("width", 512) + height = prompt.get("height", 512) + scale = prompt.get("scale", 7.5) + seed = prompt.get("seed") + prompt = prompt.get("prompt") + + prompt = replace_filewords_prompt(prompt, args) + negative_prompt = replace_filewords_prompt(negative_prompt, args) + else: + prompt = replace_filewords_prompt(prompt, args) + # prompt = prompt.strip() + # if len(prompt) == 0 or prompt[0] == "#": + # continue + + # subset of gen_img_diffusers + prompt_args = prompt.split(" --") + prompt = prompt_args[0] + negative_prompt = None + sample_steps = 30 + width = height = 512 + scale = 7.5 + seed = None + for parg in prompt_args: + try: + m = re.match(r"w (\d+)", parg, re.IGNORECASE) + if m: + width = int(m.group(1)) + continue + + m = re.match(r"h (\d+)", parg, re.IGNORECASE) + if m: + height = int(m.group(1)) + continue + + m = re.match(r"d (\d+)", parg, re.IGNORECASE) + if m: + seed = int(m.group(1)) + continue + + m = re.match(r"s (\d+)", parg, re.IGNORECASE) + if m: # steps + sample_steps = max(1, min(1000, int(m.group(1)))) + continue + + m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE) + if m: # scale + scale = float(m.group(1)) + continue + + m = re.match(r"n (.+)", parg, re.IGNORECASE) + if m: # negative prompt + negative_prompt = m.group(1) + continue + + except ValueError as ex: + print(f"Exception in parsing / 解析エラー: {parg}") + print(ex) + + if seed is not None: + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + + if prompt_replacement is not None: + prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1]) + if negative_prompt is not None: + negative_prompt = negative_prompt.replace(prompt_replacement[0], prompt_replacement[1]) + + height = max(64, height - height % 8) # round to divisible by 8 + width = max(64, width - width % 8) # round to divisible by 8 + print(f"prompt: {prompt}") + print(f"negative_prompt: {negative_prompt}") + print(f"height: {height}") + print(f"width: {width}") + print(f"sample_steps: {sample_steps}") + print(f"scale: {scale}") + image = pipeline( + prompt=prompt, + height=height, + width=width, + num_inference_steps=sample_steps, + guidance_scale=scale, + negative_prompt=negative_prompt, + ).images[0] + + ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) + num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}" + seed_suffix = "" if seed is None else f"_{seed}" + + if is_generating_only: + img_filename = ( + f"{'' if args.output_name is None else args.output_name + '_'}{ts_str}_{num_suffix}_{i:02d}{seed_suffix}.png" + ) + else: + img_filename = ( + f"{'' if args.output_name is None else args.output_name + '_'}{ts_str}_{i:04d}{seed_suffix}.png" + ) + if is_sample_only: + # make prompt txt file + img_path_no_ext = os.path.join(save_dir, img_filename[:-4]) + with open(img_path_no_ext + ".txt", "w") as f: + # put prompt in txt file + f.write(prompt) + # close file + f.close() + + image.save(os.path.join(save_dir, img_filename)) + + # wandb有効時のみログを送信 + try: + wandb_tracker = accelerator.get_tracker("wandb") + try: + import wandb + except ImportError: # 事前に一度確認するのでここはエラー出ないはず + raise ImportError("No wandb / wandb がインストールされていないようです") + + wandb_tracker.log({f"sample_{i}": wandb.Image(image)}) + except: # wandb 無効時 + pass + + # clear pipeline and cache to reduce vram usage + del pipeline + torch.cuda.empty_cache() + + torch.set_rng_state(rng_state) + if cuda_rng_state is not None: + torch.cuda.set_rng_state(cuda_rng_state) + vae.to(org_vae_device)