forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmachine_adc.c
248 lines (218 loc) · 9.9 KB
/
machine_adc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Philipp Ebensberger
* Copyright (c) 2022 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_adc.c via MICROPY_PY_MACHINE_ADC_INCLUDEFILE.
#include "py/mphal.h"
#include "sam.h"
#include "pin_af.h"
typedef struct _machine_adc_obj_t {
mp_obj_base_t base;
adc_config_t adc_config;
uint8_t id;
uint8_t avg;
uint8_t bits;
uint8_t vref;
} machine_adc_obj_t;
#define DEFAULT_ADC_BITS 12
#define DEFAULT_ADC_AVG 16
#if defined(MCU_SAMD21)
static uint8_t adc_vref_table[] = {
ADC_REFCTRL_REFSEL_INT1V_Val, ADC_REFCTRL_REFSEL_INTVCC0_Val,
ADC_REFCTRL_REFSEL_INTVCC1_Val, ADC_REFCTRL_REFSEL_AREFA_Val, ADC_REFCTRL_REFSEL_AREFB_Val
};
#if MICROPY_HW_ADC_VREF
#define DEFAULT_ADC_VREF MICROPY_HW_ADC_VREF
#else
#define DEFAULT_ADC_VREF (3)
#endif
#define ADC_EVSYS_CHANNEL 0
#elif defined(MCU_SAMD51)
static uint8_t adc_vref_table[] = {
ADC_REFCTRL_REFSEL_INTREF_Val, ADC_REFCTRL_REFSEL_INTVCC1_Val,
ADC_REFCTRL_REFSEL_INTVCC0_Val, ADC_REFCTRL_REFSEL_AREFA_Val,
ADC_REFCTRL_REFSEL_AREFB_Val, ADC_REFCTRL_REFSEL_AREFC_Val
};
#if MICROPY_HW_ADC_VREF
#define DEFAULT_ADC_VREF MICROPY_HW_ADC_VREF
#else
#define DEFAULT_ADC_VREF (3)
#endif
#endif // defined(MCU_SAMD21)
// The ADC class doesn't have any constants for this port.
#define MICROPY_PY_MACHINE_ADC_CLASS_CONSTANTS
Adc *const adc_bases[] = ADC_INSTS;
uint32_t busy_flags = 0;
bool init_flags[2] = {false, false};
static void adc_init(machine_adc_obj_t *self);
static uint8_t resolution[] = {
ADC_CTRLB_RESSEL_8BIT_Val, ADC_CTRLB_RESSEL_10BIT_Val, ADC_CTRLB_RESSEL_12BIT_Val
};
extern mp_int_t log2i(mp_int_t num);
static void mp_machine_adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind;
machine_adc_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "ADC(%q, device=%u, channel=%u, bits=%u, average=%u, vref=%d)",
pin_find_by_id(self->id)->name, self->adc_config.device,
self->adc_config.channel, self->bits, 1 << self->avg, self->vref);
}
static mp_obj_t mp_machine_adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_bits, ARG_average, ARG_vref };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = DEFAULT_ADC_BITS} },
{ MP_QSTR_average, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_ADC_AVG} },
{ MP_QSTR_vref, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_ADC_VREF} },
};
// Parse the arguments.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Unpack and check, whether the pin has ADC capability
int id = mp_hal_get_pin_obj(args[ARG_id].u_obj);
adc_config_t adc_config = get_adc_config(id, busy_flags);
// Now that we have a valid device and channel, create and populate the ADC instance
machine_adc_obj_t *self = mp_obj_malloc(machine_adc_obj_t, &machine_adc_type);
self->id = id;
self->adc_config = adc_config;
self->bits = DEFAULT_ADC_BITS;
uint16_t bits = args[ARG_bits].u_int;
if (bits >= 8 && bits <= 12) {
self->bits = bits;
}
uint32_t avg = log2i(args[ARG_average].u_int);
self->avg = (avg <= 10 ? avg : 10);
uint8_t vref = args[ARG_vref].u_int;
if (0 <= vref && vref < sizeof(adc_vref_table)) {
self->vref = vref;
}
// flag the device/channel as being in use.
busy_flags |= (1 << (self->adc_config.device * 16 + self->adc_config.channel));
init_flags[self->adc_config.device] = false;
adc_init(self);
return MP_OBJ_FROM_PTR(self);
}
// read_u16()
static mp_int_t mp_machine_adc_read_u16(machine_adc_obj_t *self) {
Adc *adc = adc_bases[self->adc_config.device];
// Set the reference voltage. Default: external AREFA.
adc->REFCTRL.reg = adc_vref_table[self->vref];
// Set Input channel and resolution
// Select the pin as positive input and gnd as negative input reference, non-diff mode by default
adc->INPUTCTRL.reg = ADC_INPUTCTRL_MUXNEG_GND | self->adc_config.channel;
// set resolution. Scale 8-16 to 0 - 4 for table access.
adc->CTRLB.bit.RESSEL = resolution[(self->bits - 8) / 2];
// Measure input voltage
adc->SWTRIG.bit.START = 1;
while (adc->INTFLAG.bit.RESRDY == 0) {
}
// Get and return the result
return adc->RESULT.reg * (65536 / (1 << self->bits));
}
// deinit() : release the ADC channel
static void mp_machine_adc_deinit(machine_adc_obj_t *self) {
busy_flags &= ~((1 << (self->adc_config.device * 16 + self->adc_config.channel)));
}
void adc_deinit_all(void) {
busy_flags = 0;
init_flags[0] = 0;
init_flags[1] = 0;
}
static void adc_init(machine_adc_obj_t *self) {
// ADC & clock init is done only once per ADC
if (init_flags[self->adc_config.device] == false) {
Adc *adc = adc_bases[self->adc_config.device];
init_flags[self->adc_config.device] = true;
#if defined(MCU_SAMD21)
// Configuration SAMD21
// Enable APBD clocks and PCHCTRL clocks; GCLK2 at 48 MHz
PM->APBCMASK.reg |= PM_APBCMASK_ADC;
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2 | GCLK_CLKCTRL_ID_ADC;
while (GCLK->STATUS.bit.SYNCBUSY) {
}
// Reset ADC registers
adc->CTRLA.bit.SWRST = 1;
while (adc->CTRLA.bit.SWRST) {
}
// Get the calibration data
uint32_t bias = (*((uint32_t *)ADC_FUSES_BIASCAL_ADDR) & ADC_FUSES_BIASCAL_Msk) >> ADC_FUSES_BIASCAL_Pos;
uint32_t linearity = (*((uint32_t *)ADC_FUSES_LINEARITY_0_ADDR) & ADC_FUSES_LINEARITY_0_Msk) >> ADC_FUSES_LINEARITY_0_Pos;
linearity |= ((*((uint32_t *)ADC_FUSES_LINEARITY_1_ADDR) & ADC_FUSES_LINEARITY_1_Msk) >> ADC_FUSES_LINEARITY_1_Pos) << 5;
/* Write the calibration data. */
ADC->CALIB.reg = ADC_CALIB_BIAS_CAL(bias) | ADC_CALIB_LINEARITY_CAL(linearity);
// Divide 48MHz clock by 32 to obtain 1.5 MHz clock to adc
adc->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32;
// Select external AREFA as reference voltage.
adc->REFCTRL.reg = adc_vref_table[self->vref];
// Average: Accumulate samples and scale them down accordingly
adc->AVGCTRL.reg = self->avg | ADC_AVGCTRL_ADJRES(self->avg);
// Enable ADC and wait to be ready
adc->CTRLA.bit.ENABLE = 1;
while (adc->STATUS.bit.SYNCBUSY) {
}
#elif defined(MCU_SAMD51)
// Configuration SAMD51
// Enable APBD clocks and PCHCTRL clocks; GCLK2 at 48 MHz
if (self->adc_config.device == 0) {
GCLK->PCHCTRL[ADC0_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK2 | GCLK_PCHCTRL_CHEN;
MCLK->APBDMASK.bit.ADC0_ = 1;
} else {
GCLK->PCHCTRL[ADC1_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK2 | GCLK_PCHCTRL_CHEN;
MCLK->APBDMASK.bit.ADC1_ = 1;
}
// Reset ADC registers
adc->CTRLA.bit.SWRST = 1;
while (adc->CTRLA.bit.SWRST) {
}
// Get the calibration data
uint32_t biascomp;
uint32_t biasr2r;
uint32_t biasrefbuf;
if (self->adc_config.device == 0) {
biascomp = (*((uint32_t *)ADC0_FUSES_BIASCOMP_ADDR) & ADC0_FUSES_BIASCOMP_Msk) >> ADC0_FUSES_BIASCOMP_Pos;
biasr2r = (*((uint32_t *)ADC0_FUSES_BIASR2R_ADDR) & ADC0_FUSES_BIASR2R_Msk) >> ADC0_FUSES_BIASR2R_Pos;
biasrefbuf = (*((uint32_t *)ADC0_FUSES_BIASREFBUF_ADDR) & ADC0_FUSES_BIASREFBUF_Msk) >> ADC0_FUSES_BIASREFBUF_Pos;
} else {
biascomp = (*((uint32_t *)ADC1_FUSES_BIASCOMP_ADDR) & ADC1_FUSES_BIASCOMP_Msk) >> ADC1_FUSES_BIASCOMP_Pos;
biasr2r = (*((uint32_t *)ADC1_FUSES_BIASR2R_ADDR) & ADC1_FUSES_BIASR2R_Msk) >> ADC1_FUSES_BIASR2R_Pos;
biasrefbuf = (*((uint32_t *)ADC1_FUSES_BIASREFBUF_ADDR) & ADC1_FUSES_BIASREFBUF_Msk) >> ADC1_FUSES_BIASREFBUF_Pos;
}
/* Write the calibration data. */
adc->CALIB.reg = ADC_CALIB_BIASCOMP(biascomp) | ADC_CALIB_BIASR2R(biasr2r) | ADC_CALIB_BIASREFBUF(biasrefbuf);
// Divide 48MHz clock by 32 to obtain 1.5 MHz clock to adc
adc->CTRLA.reg = ADC_CTRLA_PRESCALER_DIV32;
// Set the reference voltage. Default: external AREFA.
adc->REFCTRL.reg = adc_vref_table[self->vref];
// Average: Accumulate samples and scale them down accordingly
adc->AVGCTRL.reg = self->avg | ADC_AVGCTRL_ADJRES(self->avg);
// Enable ADC and wait to be ready
adc->CTRLA.bit.ENABLE = 1;
while (adc->SYNCBUSY.bit.ENABLE) {
}
#endif
}
// Set the port as given in self->id as ADC
mp_hal_set_pin_mux(self->id, ALT_FCT_ADC);
}