-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheredity.py
268 lines (216 loc) · 7.99 KB
/
heredity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import csv
import itertools
import sys
PROBS = {
# Unconditional probabilities for having gene
"gene": {
2: 0.01,
1: 0.03,
0: 0.96
},
"trait": {
# Probability of trait given two copies of gene
2: {
True: 0.65,
False: 0.35
},
# Probability of trait given one copy of gene
1: {
True: 0.56,
False: 0.44
},
# Probability of trait given no gene
0: {
True: 0.01,
False: 0.99
}
},
# Mutation probability
"mutation": 0.01
}
def main():
# Check for proper usage
if len(sys.argv) != 2:
sys.exit("Usage: python heredity.py data.csv")
people = load_data(sys.argv[1])
# Keep track of gene and trait probabilities for each person
probabilities = {
person: {
"gene": {
2: 0,
1: 0,
0: 0
},
"trait": {
True: 0,
False: 0
}
}
for person in people
}
# Loop over all sets of people who might have the trait
names = set(people)
for have_trait in powerset(names):
# Check if current set of people violates known information
fails_evidence = any(
(people[person]["trait"] is not None and
people[person]["trait"] != (person in have_trait))
for person in names
)
if fails_evidence:
continue
# Loop over all sets of people who might have the gene
for one_gene in powerset(names):
for two_genes in powerset(names - one_gene):
# Update probabilities with new joint probability
p = joint_probability(people, one_gene, two_genes, have_trait)
update(probabilities, one_gene, two_genes, have_trait, p)
# Ensure probabilities sum to 1
normalize(probabilities)
# Print results
for person in people:
print(f"{person}:")
for field in probabilities[person]:
print(f" {field.capitalize()}:")
for value in probabilities[person][field]:
p = probabilities[person][field][value]
print(f" {value}: {p:.4f}")
def load_data(filename):
"""
Load gene and trait data from a file into a dictionary.
File assumed to be a CSV containing fields name, mother, father, trait.
mother, father must both be blank, or both be valid names in the CSV.
trait should be 0 or 1 if trait is known, blank otherwise.
"""
data = dict()
with open(filename) as f:
reader = csv.DictReader(f)
for row in reader:
name = row["name"]
data[name] = {
"name": name,
"mother": row["mother"] or None,
"father": row["father"] or None,
"trait": (True if row["trait"] == "1" else
False if row["trait"] == "0" else None)
}
return data
def powerset(s):
"""
Return a list of all possible subsets of set s.
"""
s = list(s)
return [
set(s) for s in itertools.chain.from_iterable(
itertools.combinations(s, r) for r in range(len(s) + 1)
)
]
def joint_probability(people, one_gene, two_genes, have_trait):
"""
Compute and return a joint probability.
The probability returned should be the probability that
* everyone in set `one_gene` has one copy of the gene, and
* everyone in set `two_genes` has two copies of the gene, and
* everyone not in `one_gene` or `two_gene` does not have the gene, and
* everyone in set `have_trait` has the trait, and
* everyone not in set` have_trait` does not have the trait.
"""
joint_probability_dict = {}
for person, details in people.items():
trait = True if person in have_trait else False
mother = details["mother"]
father = details["father"]
# initalize
are_parents_available = True
mother_side_prob = 0
father_side_prob = 0
# if father and mother are not available
if (mother == None and father == None):
are_parents_available = False
else: # else calculate the probability of getting one gene from each parent
mother_side_prob = probability_one_gene_from_parent(mother, one_gene, two_genes)
father_side_prob = probability_one_gene_from_parent(father, one_gene, two_genes)
prob = 0
if person in one_gene:
# calculate probability of getting one gene from either of parents
person_side_prob = 0
if are_parents_available:
person_side_prob = mother_side_prob * (1-father_side_prob) + (1-mother_side_prob) * father_side_prob
else:
person_side_prob = PROBS["gene"][1]
prob = person_side_prob * PROBS["trait"][1][trait]
elif person in two_genes:
# calculate probability of getting one gene from both parents
person_side_prob = 0
if are_parents_available:
person_side_prob = mother_side_prob * father_side_prob
else:
person_side_prob = PROBS["gene"][2]
prob = person_side_prob * PROBS["trait"][2][trait]
else:
# calculate the probability of not getting the gene from both parents
person_side_prob = 0
if are_parents_available:
person_side_prob = (1 - mother_side_prob) * (1-father_side_prob)
else:
person_side_prob = PROBS["gene"][0]
prob = person_side_prob * PROBS["trait"][0][trait]
joint_probability_dict[person] = prob
# calculate joint probability
joint_probability_value = 1
for person, prob in joint_probability_dict.items():
joint_probability_value = joint_probability_value * prob
return joint_probability_value
def probability_one_gene_from_parent(parent, one_gene, two_genes):
"""
Returns the probability of getting one gene from parent
"""
prob = 0
if parent in two_genes:
prob = 1 - PROBS["mutation"]
elif parent in one_gene:
prob = 0.5
elif parent != None:
prob = PROBS["mutation"]
return prob
def update(probabilities, one_gene, two_genes, have_trait, p):
"""
Add to `probabilities` a new joint probability `p`.
Each person should have their "gene" and "trait" distributions updated.
Which value for each distribution is updated depends on whether
the person is in `have_gene` and `have_trait`, respectively.
"""
for person in probabilities:
gene_key = 0
trait_key = False
if person in one_gene:
gene_key = 1
elif person in two_genes:
gene_key = 2
if person in have_trait:
trait_key = True
# Update probability p appropriately
probabilities[person]["gene"][gene_key] += p
probabilities[person]["trait"][trait_key] += p
def normalize(probabilities):
"""
Update `probabilities` such that each probability distribution
is normalized (i.e., sums to 1, with relative proportions the same).
"""
for person in probabilities:
sum_gene = 0
sum_trait = 0
# sum of all gene values
for value in probabilities[person]["gene"].values():
sum_gene += value
# sum of all trait values
for value in probabilities[person]["trait"].values():
sum_trait += value
# normalize gene values by dividing each value by total sum
for k,v in probabilities[person]["gene"].items():
probabilities[person]["gene"][k] = v/sum_gene
# normalize trait values by dividing each value by total sum
for k,v in probabilities[person]["trait"].items():
probabilities[person]["trait"][k] = v/sum_trait
if __name__ == "__main__":
main()