forked from hharveygit/CARLA_JNM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
applyCARLARealCCEPs.m
221 lines (173 loc) · 8.91 KB
/
applyCARLARealCCEPs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
%% This script generates outputs for CARLA applied to single stim sites in real data (Fig 5B-F, Fig 6C-F)
%
% 2023/09/27
%
% If this code is used in a publication, please cite the manuscript:
% "CARLA: Adjusted common average referencing for cortico-cortical evoked potential data"
% by H Huang, G Ojeda Valencia, NM Gregg, GM Osman, MN Montoya,
% GA Worrell, KJ Miller, and D Hermes.
%
% CARLA manuscript package.
% Copyright (C) 2023 Harvey Huang
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <https://www.gnu.org/licenses/>.
%
%% Load all data for selected subject
% 'sub' and 'run' variables should have been defined in main script
elecsPath = fullfile(dataPath, sub, 'ses-ieeg01', 'ieeg', sprintf('%s_ses-ieeg01_electrodes.tsv', sub));
elecs = ieeg_readtableRmHyphens(elecsPath);
% known issue: Matlab crashing when readMef3 loads mef data from relative path. Temporary fix = fullfile with pwd. If you specified an absolute "dataPath", remove "pwd".
mefPath = fullfile(pwd, dataPath, sub, 'ses-ieeg01', 'ieeg', sprintf('%s_ses-ieeg01_task-ccep_run-%02d_ieeg.mefd', sub, run));
channelsPath = fullfile(dataPath, sub, 'ses-ieeg01', 'ieeg', sprintf('%s_ses-ieeg01_task-ccep_run-%02d_channels.tsv', sub, run));
eventsPath = fullfile(dataPath, sub, 'ses-ieeg01', 'ieeg', sprintf('%s_ses-ieeg01_task-ccep_run-%02d_events.tsv', sub, run));
annotPath = fullfile(dataPath, 'derivatives', 'event_annotations', sub, sprintf('%s_ses-ieeg01_task-ccep_run-%02d_eventsAnnot.tsv', sub, run));
% Load CCEP data
mef = ccep_PreprocessMef(mefPath, channelsPath, eventsPath);
mef.loadMefAll;
mef.highpass;
mef.loadMefTrials([-1, 1]);
%mef.plotOutputs(1, [], 200);
tt = mef.tt;
srate = mef.srate;
channels = mef.channels;
events = mef.evts;
data = mef.data;
sites = groupby(events.electrical_stimulation_site);
outdir = fullfile('output', 'realCCEPs');
mkdir(outdir);
clear annots
try % subject 4 has no annots because no interictal activity, hence the try
annots = readtable(annotPath, 'FileType', 'text', 'Delimiter', '\t');
annots = annots.status_description;
assert(length(annots) == height(events), 'Error: length of event annotations does not match events table height');
catch
warning('Unable to load event annotation for events');
end
% show the seizure onset zones which are excluded from stimulation
SOZ = elecs.name(contains(elecs.seizure_zone, 'SOZ'));
disp('SOZs:');
disp(SOZ');
clear elecsPath mefPath channelsPath eventsPath annotPath % cleaning
%% Extract data from site of interest, NaN out individual bad trials
% 'site' variable should have been defined in main script
idxesSite = sites{strcmp(site, sites(:, 1)), 2}; % indices corresponding to this stim site
nTrials = length(idxesSite);
goodChs = strcmp(channels.type, 'SEEG') & strcmp(channels.status, 'good') & ~ismember(upper(channels.name), getNeighborChs(split(site,'-'), 2)); % exclude sites 2 away from current
dataSite = data(goodChs, :, idxesSite);
chsSite = channels.name(goodChs);
% remove bad trials and set channels to nan in individual trials, according to annotations
if exist('annots', 'var')
annotsSite = annots(idxesSite); % get annotations corresponding to this stim site
dataSite = rmBadTrialsAnnots(dataSite, chsSite, annotsSite);
end
figure('Position', [200, 200, 1200, 1200]);
subplot(1, 2, 1); % first half of channels
ieeg_plotTrials(tt, mean(dataSite(1:floor(length(chsSite)/2), :, :), 3, 'omitnan')', 200, chsSite(1:floor(length(chsSite)/2)));
xlim([-0.5, 1]);
subplot(1, 2, 2); % first half of channels
ieeg_plotTrials(tt, mean(dataSite(ceil(length(chsSite)/2):end, :, :), 3, 'omitnan')', 200, chsSite(ceil(length(chsSite)/2):end));
xlim([-0.5, 1]);
%% Apply CARLA and plot variance, zminmean plots
rng('default');
nanChs = any(isnan(dataSite), [2, 3]); % any channels with nan in any trial
dataSiteNoNan = dataSite(~nanChs, :, :);
chsSiteNoNan = chsSite(~nanChs);
[Vcar, CAR, stats] = CARLA(tt, dataSiteNoNan, srate, true);
nCAR = length(stats.chsUsed);
cmSens = [1, 165/255, 0]; % orange color for max
% ZminMean plot
figure('Position', [200, 200, 600, 300]); hold on
errorbar(mean(stats.zMinMean, 2), std(stats.zMinMean, 0, 2), 'k.-', 'MarkerSize', 10, 'CapSize', 1); % SD of bootstrapped means
plot(nCAR, mean(stats.zMinMean(nCAR, :), 2), '*', 'Color', cmSens);
xlim([0, length(chsSiteNoNan)+1]); ylim([-1.5, 0]);
yline(0, 'Color', 'k');
saveas(gcf, fullfile(outdir, sprintf('%s_%s_zMinMean', sub, site)), 'svg');
saveas(gcf, fullfile(outdir, sprintf('%s_%s_zMinMean', sub, site)), 'png');
% Variance plot
vars = stats.vars(stats.order); % sort in order
figure('Position', [200, 200, 600, 300]); hold on
plot(vars, 'k.-', 'MarkerSize', 10);
xline(nCAR + 0.5, 'Color', cmSens);
xlim([0, length(chsSiteNoNan)+1]);
saveas(gcf, fullfile(outdir, sprintf('%s_%s_covar', sub, site)), 'png');
saveas(gcf, fullfile(outdir, sprintf('%s_%s_covar', sub, site)), 'svg');
%% Plot channels sorted by CARLA order and CAR
% Plot (pre-CAR) data with line noise removed, in order of variance
dataSite2Plot = zeros(size(dataSiteNoNan));
for tr = 1:size(dataSiteNoNan, 3)
dataSite2Plot(:, :, tr) = ieeg_notch(dataSiteNoNan(:, :, tr)', srate, 60)';
end
dataSite2Plot = dataSite2Plot(stats.order, :, :);
yspace = 120;
% make excluded channels gray
cm = zeros(length(chsSiteNoNan), 3);
cm(nCAR+1:end, :) = repmat([0.5, 0.5, 0.5], length(chsSiteNoNan)-nCAR, 1);
figure('Position', [200, 200, 1200, 1200]);
nHalf = floor(length(chsSiteNoNan)/2); % number at which to break channels into 2 columns
subplot(1, 2, 1); % first half of channels
ieeg_plotTrials(tt, mean(dataSite2Plot(1:nHalf, :, :), 3)', yspace, 1:nHalf, cm(1:nHalf, :));
xlim([-0.1, 0.5]);
subplot(1, 2, 2); % second half of channels
ieeg_plotTrials(tt, mean(dataSite2Plot(nHalf+1:end, :, :), 3)', yspace, nHalf+1:length(chsSiteNoNan), cm(nHalf+1:end, :));
xlim([-0.1, 0.5]);
saveas(gcf, fullfile(outdir, sprintf('%s_%s_sortedChs', sub, site)), 'png');
print(gcf, fullfile(outdir, sprintf('%s_%s_sortedChs', sub, site)),'-depsc2', '-r300', '-painters');
% Plot the adjusted common average itself
figure('Position', [200, 200, 600, 200]);
hold on
plot(tt, CAR, 'Color', [0.5, 0.5, 0.5]);
plot(tt, mean(CAR, 2), 'k-', 'LineWidth', 1.5);
xlim([-0.1, 0.5]); ylim([-1200, 1200]);
saveas(gcf, fullfile(outdir, sprintf('%s_%s_CAR', sub, site)), 'png');
print(gcf, fullfile(outdir, sprintf('%s_%s_CAR', sub, site)), '-depsc2', '-r300', '-painters');
%% Plot all channels in one column (for Figure S1)
% downsample plotting signals to make less taxing on illustrator
dataSite2PlotDs = nan(size(dataSite2Plot, 1), length(tt)/4, size(dataSite2Plot, 3));
for ii = 1:size(dataSite2Plot, 3)
dataSite2PlotDs(:, :, ii) = downsample(dataSite2Plot(:, :, ii)', 4)';
end
ttDs = tt(1:4:end); % downsample time vector
yspace = 80;
figure('Position', [200, 200, 400, 1200]);
ys = ieeg_plotTrials(ttDs, mean(dataSite2PlotDs, 3)', yspace, 1:length(chsSiteNoNan), cm);
xlim([-0.1, 0.5]); ylim([ys(end) - 7*yspace, ys(1) + 3*yspace]);
saveas(gcf, fullfile(outdir, sprintf('%s_%s_sortedChs_column', sub, site)), 'png');
print(gcf, fullfile(outdir, sprintf('%s_%s_sortedChs_column', sub, site)), '-depsc2', '-r300', '-painters');
%% Plot examples of channels before and after CARLA
% chs2Plot should be defined in main script
for ii = 1:length(chs2Plot)
ch = chs2Plot(ii);
fprintf('Ch %s\n', chsSiteNoNan{stats.order(ch)});
sigRaw = squeeze(dataSiteNoNan(stats.order(ch), :, :)); % only high-pass, no notch
sigNotch = squeeze(dataSite2Plot(ch, :, :)); % only notch, no re-reference (order already sorted)
sigCar = squeeze(Vcar(stats.order(ch), :, :));
% plot raw signal
figure('Position', [200, 200, 450, 450]);
subplot(3, 1, 1); hold on;
plot(tt, sigRaw, 'Color', [0.5, 0.5, 0.5]);
plot(tt, mean(sigRaw, 2), 'k-', 'LineWidth', 1.5);
xlim([-0.1, 0.5]); ylim([-1200, 1200]);
% plot notched signal
subplot(3, 1, 2); hold on;
plot(tt, sigNotch, 'Color', [0.5, 0.5, 0.5]);
plot(tt, mean(sigNotch, 2), 'k-', 'LineWidth', 1.5);
xlim([-0.1, 0.5]); ylim([-600, 600]);
% plot CARLA signal
subplot(3, 1, 3); hold on;
plot(tt, sigCar, 'Color', [0.5, 0.5, 0.5]);
plot(tt, mean(sigCar, 2), 'k-', 'LineWidth', 1.5);
xlim([-0.1, 0.5]); ylim([-600, 600]);
saveas(gcf, fullfile(outdir, sprintf('%s_%s_exCh%d', sub, site, ch)), 'png');
print(gcf, fullfile(outdir, sprintf('%s_%s_exCh%d', sub, site, ch)), '-depsc2', '-r300', '-painters');
end