-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
160 lines (142 loc) · 9.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import pandas as pd
from log import *
from eval import *
from utils import *
from train import *
from Model.module_fuzzy import FuzzyDGL
from graph import NeighborFinder
import resource
args, sys_argv = get_args()
BATCH_SIZE = args.bs
NUM_NEIGHBORS = args.n_degree
NUM_EPOCH = args.n_epoch
ATTN_NUM_HEADS = args.attn_n_head
DROP_OUT = args.drop_out
GPU = args.gpu
USE_TIME = args.time
ATTN_AGG_METHOD = args.attn_agg_method
ATTN_MODE = args.attn_mode
DATA = args.data
NUM_LAYER = args.n_layer
LEARNING_RATE = args.lr
POS_ENC = args.pos_enc
POS_DIM = args.pos_dim
WALK_POOL = args.walk_pool
WALK_N_HEAD = args.walk_n_head
WALK_MUTUAL = args.walk_mutual if WALK_POOL == 'attn' else False
TOLERANCE = args.tolerance
CPU_CORES = args.cpu_cores
NGH_CACHE = args.ngh_cache
VERBOSITY = args.verbosity
N_RULES = args.n_rules
AGG = args.agg
SEED = args.seed
assert(CPU_CORES >= -1)
set_random_seed(SEED)
logger, get_checkpoint_path, best_model_path = set_up_logger(args, sys_argv)
# Load data and sanity check
g_df = pd.read_csv('./processed/ml_{}.csv'.format(DATA))
if args.data_usage < 1:
g_df = g_df.iloc[:int(args.data_usage*g_df.shape[0])]
logger.info('use partial data, ratio: {}'.format(args.data_usage))
e_feat = np.load('./processed/ml_{}.npy'.format(DATA))
n_feat = np.load('./processed/ml_{}_node.npy'.format(DATA))
src_l = g_df.u.values
dst_l = g_df.i.values
e_idx_l = g_df.idx.values
label_l = g_df.label.values
ts_l = g_df.ts.values
max_idx = max(src_l.max(), dst_l.max())
assert(np.unique(np.stack([src_l, dst_l])).shape[0] == max_idx or ~math.isclose(1, args.data_usage)) # all nodes except node 0 should appear and be compactly indexed
assert(n_feat.shape[0] == max_idx + 1 or ~math.isclose(1, args.data_usage)) # the nodes need to map one-to-one to the node feat matrix
# split and pack the data by generating valid train/val/test mask according to the "mode"
val_time, test_time = list(np.quantile(g_df.ts, [0.70, 0.85]))
if args.mode == 't':
logger.info('Transductive training...')
valid_train_flag = (ts_l <= val_time)
valid_val_flag = (ts_l <= test_time) * (ts_l > val_time)
valid_test_flag = ts_l > test_time
else:
assert(args.mode == 'i')
logger.info('Inductive training...')
random.seed(2020)
# pick some nodes to mask (i.e. reserved for testing) for inductive setting
total_node_set = set(np.unique(np.hstack([g_df.u.values, g_df.i.values])))
num_total_unique_nodes = len(total_node_set)
mask_node_set = set(random.sample(set(src_l[ts_l > val_time]).union(set(dst_l[ts_l > val_time])), int(0.1 * num_total_unique_nodes)))
mask_src_flag = g_df.u.map(lambda x: x in mask_node_set).values
mask_dst_flag = g_df.i.map(lambda x: x in mask_node_set).values
none_mask_node_flag = (1 - mask_src_flag) * (1 - mask_dst_flag)
valid_train_flag = (ts_l <= val_time) * (none_mask_node_flag > 0)
valid_val_flag = (ts_l <= test_time) * (ts_l > val_time) # * (none_mask_node_flag > 0.5) # both train and val edges can not contain any masked nodes
valid_test_flag = (ts_l > test_time) # * (none_mask_node_flag < 0.5) # test edges must contain at least one masked node
valid_test_new_new_flag = (ts_l > test_time) * mask_src_flag * mask_dst_flag
valid_test_new_old_flag = (valid_test_flag.astype(int) - valid_test_new_new_flag.astype(int)).astype(bool)
logger.info('Sampled {} nodes (10 %) which are masked in training and reserved for testing...'.format(len(mask_node_set)))
# split data according to the mask
train_src_l, train_dst_l, train_ts_l, train_e_idx_l, train_label_l = src_l[valid_train_flag], dst_l[valid_train_flag], ts_l[valid_train_flag], e_idx_l[valid_train_flag], label_l[valid_train_flag]
train_node_set = set(train_src_l).union(train_dst_l)
assert (len(train_node_set - mask_node_set) == len(train_node_set))
new_node_set = total_node_set - train_node_set
is_new_node_edge = np.array([(a in new_node_set or b in new_node_set) for a, b in zip(src_l, dst_l)])
valid_test_new_new_flag = valid_test_flag * is_new_node_edge
val_src_l, val_dst_l, val_ts_l, val_e_idx_l, val_label_l = src_l[valid_val_flag], dst_l[valid_val_flag], ts_l[valid_val_flag], e_idx_l[valid_val_flag], label_l[valid_val_flag]
test_src_l, test_dst_l, test_ts_l, test_e_idx_l, test_label_l = src_l[valid_test_flag], dst_l[valid_test_flag], ts_l[valid_test_flag], e_idx_l[valid_test_flag], label_l[valid_test_flag]
if args.mode == 'i':
test_src_new_new_l, test_dst_new_new_l, test_ts_new_new_l, test_e_idx_new_new_l, test_label_new_new_l = src_l[valid_test_new_new_flag], dst_l[valid_test_new_new_flag], ts_l[valid_test_new_new_flag], e_idx_l[valid_test_new_new_flag], label_l[valid_test_new_new_flag]
test_src_new_old_l, test_dst_new_old_l, test_ts_new_old_l, test_e_idx_new_old_l, test_label_new_old_l = src_l[valid_test_new_old_flag], dst_l[valid_test_new_old_flag], ts_l[valid_test_new_old_flag], e_idx_l[valid_test_new_old_flag], label_l[valid_test_new_old_flag]
train_data = train_src_l, train_dst_l, train_ts_l, train_e_idx_l, train_label_l
val_data = val_src_l, val_dst_l, val_ts_l, val_e_idx_l, val_label_l
train_val_data = (train_data, val_data)
# create two neighbor finders to handle graph extraction.
# for transductive mode all phases use full_ngh_finder, for inductive node train/val phases use the partial one
# while test phase still always uses the full one
full_adj_list = [[] for _ in range(max_idx + 1)]
for src, dst, eidx, ts in zip(src_l, dst_l, e_idx_l, ts_l):
full_adj_list[src].append((dst, eidx, ts))
full_adj_list[dst].append((src, eidx, ts))
full_ngh_finder = NeighborFinder(full_adj_list, bias=args.bias, use_cache=NGH_CACHE, sample_method=args.pos_sample)
partial_adj_list = [[] for _ in range(max_idx + 1)]
for src, dst, eidx, ts in zip(train_src_l, train_dst_l, train_e_idx_l, train_ts_l):
partial_adj_list[src].append((dst, eidx, ts))
partial_adj_list[dst].append((src, eidx, ts))
partial_ngh_finder = NeighborFinder(partial_adj_list, bias=args.bias, use_cache=NGH_CACHE, sample_method=args.pos_sample)
ngh_finders = partial_ngh_finder, full_ngh_finder
# create random samplers to generate train/val/test instances
train_rand_sampler = RandEdgeSampler((train_src_l, ), (train_dst_l, ))
val_rand_sampler = RandEdgeSampler((src_l, ), (dst_l, ))
test_rand_sampler = RandEdgeSampler((src_l, ), (dst_l, ))
nn_test_rand_sampler = RandEdgeSampler((test_src_new_new_l, ), (test_dst_new_new_l, ))
rand_samplers = train_rand_sampler, val_rand_sampler
# multiprocessing memory setting
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (200*args.bs, rlimit[1]))
# model initialization
device = torch.device('cuda:{}'.format(GPU))
model = FuzzyDGL(n_feat, e_feat, n_rules=N_RULES, agg=AGG,
num_layers=NUM_LAYER, use_time=USE_TIME, attn_agg_method=ATTN_AGG_METHOD, attn_mode=ATTN_MODE,
n_head=ATTN_NUM_HEADS, drop_out=DROP_OUT, pos_dim=POS_DIM, pos_enc=POS_ENC,
num_neighbors=NUM_NEIGHBORS, walk_n_head=WALK_N_HEAD, walk_mutual=WALK_MUTUAL, walk_linear_out=args.walk_linear_out, walk_pool=args.walk_pool,
cpu_cores=CPU_CORES, verbosity=VERBOSITY, get_checkpoint_path=get_checkpoint_path)
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
criterion = torch.nn.BCELoss()
early_stopper = EarlyStopMonitor(tolerance=TOLERANCE)
# start train and val phases
train_val(train_val_data, model, args.mode, BATCH_SIZE, NUM_EPOCH, criterion, optimizer, early_stopper, ngh_finders, rand_samplers, logger)
# final testing
model.update_ngh_finder(full_ngh_finder) # remember that testing phase should always use the full neighbor finder
test_acc, test_ap, test_f1, test_auc = eval_one_epoch('test for {} nodes'.format(args.mode), model, test_rand_sampler, test_src_l, test_dst_l, test_ts_l, test_label_l, test_e_idx_l)
logger.info('Test statistics: {} all nodes -- acc: {}, auc: {}, ap: {}'.format(args.mode, test_acc, test_auc, test_ap))
test_new_new_acc, test_new_new_ap, test_new_new_auc, test_new_old_acc, test_new_old_ap, test_new_old_auc = [-1]*6
if args.mode == 'i':
test_new_new_acc, test_new_new_ap, test_new_new_f1, test_new_new_auc = eval_one_epoch('test for {} nodes'.format(args.mode), model, nn_test_rand_sampler, test_src_new_new_l, test_dst_new_new_l, test_ts_new_new_l, test_label_new_new_l, test_e_idx_new_new_l)
logger.info('Test statistics: {} inductive nodes -- acc: {}, auc: {}, ap: {}'.format(args.mode, test_new_new_acc, test_new_new_auc,test_new_new_ap ))
test_new_old_acc, test_new_old_ap, test_new_old_f1, test_new_old_auc = eval_one_epoch('test for {} nodes'.format(args.mode), model, test_rand_sampler, test_src_new_old_l, test_dst_new_old_l, test_ts_new_old_l, test_label_new_old_l, test_e_idx_new_old_l)
logger.info('Test statistics: {} new-old nodes -- acc: {}, auc: {}, ap: {}'.format(args.mode, test_new_old_acc, test_new_old_auc, test_new_old_ap))
# save model
logger.info('Saving FuzzyDGL model ...')
torch.save(model.state_dict(), best_model_path)
logger.info('FuzzyDGL model saved')
# save one line result
save_oneline_result('log/', args, [test_acc, test_auc, test_ap, test_new_new_acc, test_new_new_ap, test_new_new_auc, test_new_old_acc, test_new_old_ap, test_new_old_auc])