forked from john-b-schneider/uFDTD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfdtd-TE-reflect-coef.tex
275 lines (261 loc) · 11.5 KB
/
fdtd-TE-reflect-coef.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
\newpage
\section{Oblique Incidence: TE$^y$ Polarization}
(*** {\bf NOTE}: This section doesn't really belong here since there
has been no discussion of multi-dimensional propagation yet. However,
I've written this and haven't written the other stuff, so I've got to
stick this somewhere\ldots ***)
Let us now find the reflection and transmission coefficients for a
wave obliquely incident on a planar boundary. Assume the fields
propagate in the $xz$ plane and have TE$^y$ polarization, i.e., the
electric field is transverse to the $y$ direction so that the non-zero
fields are $E_x$, $E_z$, and $H_y$. Assume, as shown in Fig.\
\ref{fig:teYHalfSpace}, that there is a planar discontinuity in the
permittivity between two half-spaces. The discontinuity, which is
assumed to occur at $x=0$, coincides with $E_z$ nodes whose
permittivity is $\epsilon_a$.
\begin{figure}
\begin{center}
\epsfig{width=4.5in,file=Figures/Fdtd-dispersion/te-halfspace.eps}
\end{center}
\caption{A TE$^y$ plane wave incident on a planar interface. Nodes
to the left of the interface have permittivity $\epsilon_1$, nodes
to the right of the interface have permittivity $\epsilon_2$, and
nodes on the interface have permittivity $\epsilon_a$. The
interface is assumed to occur at $x=0$. The permeability is
constant throughout the computational domain.}
\label{fig:teYHalfSpace}
\end{figure}
For the two-dimensional propagation which pertains here, the harmonic
form of Ampere's law which governs the FDTD grid can be written
\begin{equation}
j \Omega\epsilon\hEvec =
-j\Kvec\times\hHvec =
-j\left(\unitvec{z}K_x\hH_y - \unitvec{x}K_z\hH_y\right).
\end{equation}
The components of the electric field are given by
\begin{eqnarray}
\hE_x &=& \frac{K_z}{\Omega\epsilon} \hH_y, \\
\hE_z &=& -\frac{K_x}{\Omega\epsilon} \hH_y.
\end{eqnarray}
The incident field is described by a unit-amplitude magnetic field
\begin{equation}
\hHvec^i = -\unitvec{y} e^{-j \tbetavec_i \cdot \rvec}
\label{eq:hyIncTeY}
\end{equation}
where the incident FDTD wave vector is given by
\begin{equation}
\tbetavec_i = \tbeta_1\left(\unitvec{x} \cos\phi_i +
\unitvec{z} \sin\phi_i\right).
\end{equation}
A minus sign is used in \refeq{eq:hyIncTeY} to ensure that at normal
incidence the orientation of the fields agrees with the assumptions
used in the one-dimensional analysis. The direction of travel is
determined by $\phi_i$, the angle the wave vector forms with the
positive $x$ axis. Thus the direction of travel in the continuous and
discrete worlds are the same. However, the FDTD phase constant (i.e.,
$\tbeta_1$ in the first medium) differs from that in the continuous
world.
The vector $-j\Kvec$ is the FDTD equivalent of the $\nabla$ operator
for obliquely propagating fields. In the case of the incident field
$\Kvec$ is given by
\begin{equation}
\Kvec_i =
\unitvec{x} \frac{2}{\Delta}
\sin\!\left(\frac{\tbeta_1 \Delta\cos\phi_i}{2}\right) +
\unitvec{z} \frac{2}{\Delta}
\sin\!\left(\frac{\tbeta_1 \Delta\sin\phi_i}{2}\right)
\label{eq:kvecTeY}
\end{equation}
where the assumption has been made that there is a uniform spatial
step size, i.e., $\Delx = \Delz = \Delta$.
As in the continuous world, the phase of the incident, reflected, and
transmitted fields must match along the interface. This dictates that
the angle of reflection must equal the angle of incidence. The
reflected and transmitted magnetic fields can thus be written,
respectively,
\begin{eqnarray}
\hHvec^r &=& \unitvec{y} \GfdtdTe e^{-j \tbetavec_r \cdot \rvec}, \\
\hHvec^t &=& -\unitvec{y} \TfdtdTe e^{-j \tbetavec_t \cdot \rvec},
\label{eq:hTransTeY}
\end{eqnarray}
where
\begin{eqnarray}
\tbetavec_r &=& \tbeta_1\left(-\unitvec{x} \cos\phi_i +
\unitvec{z} \sin\phi_i\right), \\
\tbetavec_t &=& \tbeta_2\left(\unitvec{x} \cos\phi_t +
\unitvec{z} \sin\phi_t\right),
\end{eqnarray}
$\tbeta_2$ is the FDTD phase constant in the second medium, $\phi_t$
is the transmitted angle, and $\GfdtdTe$ and $\TfdtdTe$ are the
reflection and transmission coefficients, respectively. Because of
the phase matching which must exist at the interface, $\tbeta_1
\sin\phi_i$ must equal $\tbeta_2 \sin\phi_t$.
The total field in the first medium is the sum of the incident and
reflected fields, i.e.,
\begin{eqnarray}
\hHvec_1 &=& \unitvec{y}
\left( -e^{-j \tbetavec_i \cdot \rvec}
+ \GfdtdTe e^{-j \tbetavec_r \cdot \rvec}\right), \\
\hEvec_1 &=&
\frac{\Kvec_i\times\unitvec{y}}{\Omega\epsilon_1}
e^{-j \tbetavec_i \cdot \rvec}
-\frac{\Kvec_r\times\unitvec{y}}{\Omega\epsilon_1}
\GfdtdTe e^{-j \tbetavec_r \cdot \rvec}.
\end{eqnarray}
The total field in the second medium consists of the transmitted
magnetic field given in \refeq{eq:hTransTeY} and the corresponding
electric field
\begin{equation}
\hEvec_2 =
\frac{\Kvec_t\times\unitvec{y}}{\Omega\epsilon_2}
\TfdtdTe e^{-j \tbetavec_2 \cdot \rvec}.
\end{equation}
The vector $\Kvec_r$ and $\Kvec_t$ are similar to \refeq{eq:kvecTeY}
with the appropriate change of subscripts.
The tangential electric field must match at the interface, i.e.,
\begin{equation}
\left.\unitvec{z}\cdot\hEvec_1\right|_{x=0}
=
\left.\unitvec{z}\cdot\hEvec_2\right|_{x=0}.
\end{equation}
This yields
\begin{equation}
\frac{K_{xi}}{\Omega\epsilon_1} e^{-j \tbeta_1 \sin(\phi_i) z}
-\frac{K_{xr}}{\Omega\epsilon_1} \GfdtdTe e^{-j \tbeta_1 \sin(\phi_i) z}
=
\frac{K_{xt}}{\Omega\epsilon_2} \TfdtdTe e^{-j \tbeta_2 \sin(\phi_t)z}.
\end{equation}
Because the phase must match along the boundary, the complex
exponential can be eliminated. Canceling $\Omega$, which is
common to all the terms, and recognizing that $K_{xr}=-K_{xi}$, this
equation can be written
\begin{equation}
1 + \GfdtdTe = \frac{\epsilon_1}{\epsilon_2}
\frac{K_{xt}}{K_{xi}} \TfdtdTe.
\label{eq:teYEmatch}
\end{equation}
Another equation relating the reflection and transmission coefficients
can be obtained from the update-equation for the electric-field nodes
on the interface. This is the $z$ component of Faraday's law
evaluated at $x=0$
\begin{equation}
\left.j \Omega \epsilon_a \hE_z \right|_{x=0}
= \left.\tpartial_x \hH_y\right|_{x=0}
= \frac{1}{\Delx}
\left(\left.\hH_y\right|_{x=\Delx/2} -
\left.\hH_y\right|_{x=-\Delx/2}\right).
\end{equation}
The electric field can be represented as either the transmitted field
or the sum of the incident and reflected fields. Using the
transmitted field for the electric field and discarding the phase term
which is common to all terms yields
\begin{equation}
j\Omega \epsilon_a \frac{K_{xt}}{\Omega\epsilon_2} \TfdtdTe
=
\frac{1}{\Delx}
\left(-\TfdtdTe e^{-j \tbeta_2 \cos(\phi_t)\Delx/2}
-\left[e^{j \tbeta_1 \cos(\phi_i)\Delx/2} +
\GfdtdTe e^{-j \tbeta_1 \cos(\phi_i)\Delx/2}\right]\right).
\end{equation}
Regrouping yields
\begin{equation}
e^{j \tbeta_1 \cos(\phi_i)\Delx/2} -
\GfdtdTe e^{-j \tbeta_1 \cos(\phi_i)\Delx/2} =
\left(j\frac{\epsilon_a}{\epsilon_2} K_{xt}\Delx +
e^{-j \tbeta_2 \cos(\phi_t)\Delx/2}\right)\TfdtdTe.
\label{eq:teYFaraday}
\end{equation}
Combining \refeq{eq:teYEmatch} and \refeq{eq:teYFaraday} and solving
for the reflection coefficient yields
\begin{equation}
\GfdtdTe = \frac
{\frac{K_{xt}}{\epsilon_2}e^{j \tbeta_1 \cos(\phi_i)\Delx/2} -
\frac{K_{xi}}{\epsilon_2}e^{-j \tbeta_2 \cos(\phi_2)\Delx/2} -
j\frac{\epsilon_a}{\epsilon_1\epsilon_2} K_{xi}K_{xt} \Delx}
{\frac{K_{xt}}{\epsilon_2}e^{-j \tbeta_1 \cos(\phi_i)\Delx/2} +
\frac{K_{xi}}{\epsilon_2}e^{-j \tbeta_2 \cos(\phi_2)\Delx/2} +
j\frac{\epsilon_a}{\epsilon_1\epsilon_2} K_{xi}K_{xt} \Delx}.
\label{eq:gammaTeY}
\end{equation}
As the discretization goes to zero, the third term in the numerator
and denominator goes to zero, the complex exponentials approach one,
and the $K_x$'s approach the phase constant components in their
respective media. Thus this expression gives the continuous-world
reflection coefficient as the discretization goes to zero. For normal
incidence ($\phi_i=\phi_t=0$), $K_y$ is zero and the $K_x$'s are
equivalent to $\sqrt{\mu\epsilon}\Omega$. Therefore
\refeq{eq:gammaTeY} reduces to \refeq{eq:gammaAverageII} for normal
incidence.
To solve for transmission coefficient, $\GfdtdTe$ in
\refeq{eq:gammaTeY} is replace with
$\frac{\epsilon_1}{\epsilon_2}\frac{K_{xt}}{K_{xi}}\TfdtdTe -1$.
Solving for $\TfdtdTe$ then yields
\begin{equation}
\TfdtdTe = \frac{2\frac{K_{xi}}{\epsilon_1}
\cos\!\left(\frac{\tbeta_1 \cos(\phi_i)\Delx}{2}\right)}
{\frac{K_{xt}}{\epsilon_2}e^{-j \tbeta_1 \cos(\phi_i)\Delx/2} +
\frac{K_{xi}}{\epsilon_2}e^{-j \tbeta_2 \cos(\phi_2)\Delx/2} +
j\frac{\epsilon_a}{\epsilon_1\epsilon_2} K_{xi}K_{xt} \Delx}.
\label{eq:transTeY}
\end{equation}
It may appear that the reflection and transmission coefficient depend
explicitly on the spatial step $\Delx$. However, the $K_x$ terms
contain a $\Delx$ in their denominators which cancel the $\Delx$
appearing in the third term of the numerator and denominator of the
reflection coefficient. Thus, using the definition of $K_x$, the
reflection coefficient can be written
\begin{equation}
\GfdtdTe = \frac
{\frac{1}{\epsilon_2}\sin(\kappa_{x2})e^{j\kappa_{x1}} -
\frac{1}{\epsilon_1}\sin(\kappa_{x1})e^{-j\kappa_{x2}} -
j\frac{2\epsilon_a}{\epsilon_1\epsilon_2}
\sin(\kappa_{x1})\sin(\kappa_{x2})}
{\frac{1}{\epsilon_2}\sin(\kappa_{x2})e^{-j\kappa_{x1}} +
\frac{1}{\epsilon_1}\sin(\kappa_{x1})e^{-j\kappa_{x2}} +
j\frac{2\epsilon_a}{\epsilon_1\epsilon_2}
\sin(\kappa_{x1})\sin(\kappa_{x2})}
\end{equation}
where
\begin{eqnarray}
\kappa_{x1} &=& \frac{\tbeta_1\cos(\phi_i)\Delx}{2}, \\
\kappa_{x2} &=& \frac{\tbeta_2\cos(\phi_t)\Delx}{2}.
\end{eqnarray}
Expanding the complex exponentials into real and imaginary parts
yields
\begin{equation}
\GfdtdTe = \frac
{\frac{\sin(\kappa_{x2})\cos(\kappa_{x1})}{\epsilon_2} -
\frac{\sin(\kappa_{x1})\cos(\kappa_{x2})}{\epsilon_1} -
j\left(\frac{2\epsilon_a}{\epsilon_1\epsilon_2}
\sin(\kappa_{x1})\sin(\kappa_{x2}) -
\frac{\sin(\kappa_{x2})\sin(\kappa_{x1})}{\epsilon_2} -
\frac{\sin(\kappa_{x1})\sin(\kappa_{x2})}{\epsilon_1}\right)}
{\frac{\sin(\kappa_{x2})\cos(\kappa_{x1})}{\epsilon_2} +
\frac{\sin(\kappa_{x1})\cos(\kappa_{x2})}{\epsilon_1} +
j\left(\frac{2\epsilon_a}{\epsilon_1\epsilon_2}
\sin(\kappa_{x1})\sin(\kappa_{x2}) -
\frac{\sin(\kappa_{x2})\sin(\kappa_{x1})}{\epsilon_2} -
\frac{\sin(\kappa_{x1})\sin(\kappa_{x2})}{\epsilon_1}\right)}.
\end{equation}
The imaginary part of the numerator and denominator can be simplified to
\begin{equation}
\frac{\sin(\kappa_{x1})\sin(\kappa_{x2})}{\epsilon_1\epsilon_2}
\left(2\epsilon_a - \epsilon_1 - \epsilon_2\right).
\end{equation}
As was the case for one-dimensional propagation, {\em when
$\epsilon_a$ is set equal to the average of the permittivities to
either side of the interface the imaginary part of the reflection
and transmission coefficients is zero}. For
$\epsilon_a=(\epsilon_1+\epsilon_2)/2$ the reflection and transmission
coefficients become
\begin{eqnarray}
\GfdtdTe &=& \frac
{\frac{1}{\epsilon_2}\sin(\kappa_{x2})\cos(\kappa_{x1}) -
\frac{1}{\epsilon_1}\sin(\kappa_{x1})\cos(\kappa_{x2})}
{\frac{1}{\epsilon_2}\sin(\kappa_{x2})\cos(\kappa_{x1}) +
\frac{1}{\epsilon_1}\sin(\kappa_{x1})\cos(\kappa_{x2})}, \\
\TfdtdTe &=& \frac
{\frac{2}{\epsilon_1}\sin(\kappa_{x1})\cos(\kappa_{x1})}
{\frac{1}{\epsilon_2}\sin(\kappa_{x2})\cos(\kappa_{x1}) +
\frac{1}{\epsilon_1}\sin(\kappa_{x1})\cos(\kappa_{x2})}.
\end{eqnarray}