forked from fengyang95/tiny_ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinearRegression.py
54 lines (45 loc) · 1.46 KB
/
LinearRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
from sklearn import linear_model
class LinearRegression:
def __init__(self):
self.w=None
self.n_features=None
def fit(self,X,y):
"""
w=(X^TX)^{-1}X^Ty
"""
assert isinstance(X,np.ndarray) and isinstance(y,np.ndarray)
assert X.ndim==2 and y.ndim==1
assert y.shape[0]==X.shape[0]
n_samples = X.shape[0]
self.n_features=X.shape[1]
extra=np.ones((n_samples,))
X=np.c_[X,extra]
if self.n_features<n_samples:
self.w=np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
else:
raise ValueError('dont have enough samples')
def predict(self,X):
n_samples=X.shape[0]
extra = np.ones((n_samples,))
X = np.c_[X, extra]
if self.w is None:
raise RuntimeError('cant predict before fit')
y_=X.dot(self.w)
return y_
if __name__=='__main__':
X=np.array([[1.0,0.5,0.5],[1.0,1.0,0.3],[-0.1,1.2,0.5],[1.5,2.4,3.2],[1.3,0.2,1.4]])
y=np.array([1,0.5,1.5,2,-0.3])
lr=LinearRegression()
lr.fit(X,y)
X_test=np.array([[1.3,1,3.2],[-1.2,1.2,0.8]])
y_pre=lr.predict(X_test)
print(y_pre)
sklearn_lr=linear_model.LinearRegression()
sklearn_lr.fit(X,y)
sklearn_y_pre=sklearn_lr.predict(X_test)
print(sklearn_y_pre)
ridge_reg = linear_model.Ridge(alpha=0., solver='lsqr')
ridge_reg.fit(X, y)
ridge_y_pre=ridge_reg.predict(X_test)
print(ridge_y_pre)