You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
i trained the model with pytorch-lightning==1.9.5
showing this error when i run test.py
test.py:10: UserWarning:
The version_base parameter is not specified.
Please specify a compatability version level, or None.
Will assume defaults for version 1.1
@hydra.main(config_path="confs", config_name="base")
/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/hydra/_internal/hydra.py:119: UserWarning: Future Hydra versions will no longer change working directory at job runtime by default.
See https://hydra.cc/docs/1.2/upgrades/1.1_to_1.2/changes_to_job_working_dir/ for more information.
ret = run_job(
Global seed set to 42
Working dir: /home/prityush/Desktop/avatar/vid2avatar/outputs/Video/parkinglot
/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:478: LightningDeprecationWarning: Setting `Trainer(gpus=1)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=1)` instead.
rank_zero_deprecation(
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
checkpoints/last.ckpt
Restoring states from the checkpoint path at checkpoints/last.ckpt
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
Loaded model weights from checkpoint at checkpoints/last.ckpt
Testing DataLoader 0: 0%| | 0/42 [00:00<?, ?it/s]/home/prityush/Desktop/avatar/vid2avatar/code/v2a_model.py:217: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
num_splits = (total_pixels + pixel_per_batch -
/home/prityush/Desktop/avatar/vid2avatar/code/lib/utils/meshing.py:41: FutureWarning: marching_cubes_lewiner is deprecated in favor of marching_cubes. marching_cubes_lewiner will be removed in version 0.19
verts, faces, normals, values = measure.marching_cubes_lewiner(
Error executing job with overrides: []
Traceback (most recent call last):
File "test.py", line 43, in <module>
main()
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/hydra/main.py", line 94, in decorated_main
_run_hydra(
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/hydra/_internal/utils.py", line 394, in _run_hydra
_run_app(
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/hydra/_internal/utils.py", line 457, in _run_app
run_and_report(
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/hydra/_internal/utils.py", line 223, in run_and_report
raise ex
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/hydra/_internal/utils.py", line 220, in run_and_report
return func()
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/hydra/_internal/utils.py", line 458, in <lambda>
lambda: hydra.run(
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/hydra/_internal/hydra.py", line 132, in run
_ = ret.return_value
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/hydra/core/utils.py", line 260, in return_value
raise self._return_value
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/hydra/core/utils.py", line 186, in run_job
ret.return_value = task_function(task_cfg)
File "test.py", line 39, in main
trainer.test(model, testset, ckpt_path=checkpoint)
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 794, in test
return call._call_and_handle_interrupt(
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/trainer/call.py", line 38, in _call_and_handle_interrupt
return trainer_fn(*args, **kwargs)
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 842, in _test_impl
results = self._run(model, ckpt_path=self.ckpt_path)
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1112, in _run
results = self._run_stage()
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1188, in _run_stage
return self._run_evaluate()
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1228, in _run_evaluate
eval_loop_results = self._evaluation_loop.run()
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
self.advance(*args, **kwargs)
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 152, in advance
dl_outputs = self.epoch_loop.run(self._data_fetcher, dl_max_batches, kwargs)
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
self.advance(*args, **kwargs)
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 137, in advance
output = self._evaluation_step(**kwargs)
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 234, in _evaluation_step
output = self.trainer._call_strategy_hook(hook_name, *kwargs.values())
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1494, in _call_strategy_hook
output = fn(*args, **kwargs)
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/pytorch_lightning/strategies/strategy.py", line 399, in test_step
return self.model.test_step(*args, **kwargs)
File "/home/prityush/Desktop/avatar/vid2avatar/code/v2a_model.py", line 268, in test_step
model_outputs = self.model(batch_inputs)
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/prityush/Desktop/avatar/vid2avatar/code/lib/model/v2a.py", line 158, in forward
fg_rgb_flat, others = self.get_rbg_value(points_flat, differentiable_points, view,
File "/home/prityush/Desktop/avatar/vid2avatar/code/lib/model/v2a.py", line 237, in get_rbg_value
_, gradients, feature_vectors = self.forward_gradient(x, pnts_c, cond, tfs, create_graph=is_training, retain_graph=is_training)
File "/home/prityush/Desktop/avatar/vid2avatar/code/lib/model/v2a.py", line 258, in forward_gradient
grad = torch.autograd.grad(
File "/home/prityush/.pyenv/versions/vid_avatar/lib/python3.8/site-packages/torch/autograd/__init__.py", line 272, in grad
return Variable._execution_engine.run_backward(
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
Testing DataLoader 0: 0%| | 0/42 [00:07<?, ?it/s]
The text was updated successfully, but these errors were encountered:
This issue relates to the pytorch_lightning version where we use v1.5.7. I think as long as you strictly follow the environment requirements, there shouldn't be a problem with running the code (colab reference: https://github.com/camenduru/vid2avatar-colab). To properly install pytorch, I would suggest installing the pre-built version for example if you are using cuda 11.1: pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html. The installation for the rest dependencies should then be fine.
The text was updated successfully, but these errors were encountered: