-
Notifications
You must be signed in to change notification settings - Fork 3.1k
/
406_conditional_GAN.py
106 lines (87 loc) · 4.79 KB
/
406_conditional_GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
View more, visit my tutorial page: https://mofanpy.com/tutorials/
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
Dependencies:
torch: 0.4
numpy
matplotlib
"""
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# torch.manual_seed(1) # reproducible
# np.random.seed(1)
# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001 # learning rate for generator
LR_D = 0.0001 # learning rate for discriminator
N_IDEAS = 5 # think of this as number of ideas for generating an art work (Generator)
ART_COMPONENTS = 15 # it could be total point G can draw in the canvas
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])
# show our beautiful painting range
# plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
# plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
# plt.legend(loc='upper right')
# plt.show()
def artist_works_with_labels(): # painting from the famous artist (real target)
a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]
paintings = a * np.power(PAINT_POINTS, 2) + (a-1)
labels = (a-1) > 0.5 # upper paintings (1), lower paintings (0), two classes
paintings = torch.from_numpy(paintings).float()
labels = torch.from_numpy(labels.astype(np.float32))
return paintings, labels
G = nn.Sequential( # Generator
nn.Linear(N_IDEAS+1, 128), # random ideas (could from normal distribution) + class label
nn.ReLU(),
nn.Linear(128, ART_COMPONENTS), # making a painting from these random ideas
)
D = nn.Sequential( # Discriminator
nn.Linear(ART_COMPONENTS+1, 128), # receive art work either from the famous artist or a newbie like G with label
nn.ReLU(),
nn.Linear(128, 1),
nn.Sigmoid(), # tell the probability that the art work is made by artist
)
opt_D = torch.optim.Adam(D.parameters(), lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(), lr=LR_G)
plt.ion() # something about continuous plotting
for step in range(10000):
artist_paintings, labels = artist_works_with_labels() # real painting, label from artist
G_ideas = torch.randn(BATCH_SIZE, N_IDEAS) # random ideas
G_inputs = torch.cat((G_ideas, labels), 1) # ideas with labels
G_paintings = G(G_inputs) # fake painting w.r.t label from G
D_inputs0 = torch.cat((artist_paintings, labels), 1) # all have their labels
D_inputs1 = torch.cat((G_paintings, labels), 1)
prob_artist0 = D(D_inputs0) # D try to increase this prob
prob_artist1 = D(D_inputs1) # D try to reduce this prob
D_score0 = torch.log(prob_artist0) # maximise this for D
D_score1 = torch.log(1. - prob_artist1) # maximise this for D
D_loss = - torch.mean(D_score0 + D_score1) # minimise the negative of both two above for D
G_loss = torch.mean(D_score1) # minimise D score w.r.t G
opt_D.zero_grad()
D_loss.backward(retain_graph=True) # reusing computational graph
opt_D.step()
opt_G.zero_grad()
G_loss.backward()
opt_G.step()
if step % 200 == 0: # plotting
plt.cla()
plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting',)
bound = [0, 0.5] if labels.data[0, 0] == 0 else [0.5, 1]
plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + bound[1], c='#74BCFF', lw=3, label='upper bound')
plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + bound[0], c='#FF9359', lw=3, label='lower bound')
plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(), fontdict={'size': 13})
plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 13})
plt.text(-.5, 1.7, 'Class = %i' % int(labels.data[0, 0]), fontdict={'size': 13})
plt.ylim((0, 3));plt.legend(loc='upper right', fontsize=10);plt.draw();plt.pause(0.1)
plt.ioff()
plt.show()
# plot a generated painting for upper class
z = torch.randn(1, N_IDEAS)
label = torch.FloatTensor([[1.]]) # for upper class
G_inputs = torch.cat((z, label), 1)
G_paintings = G(G_inputs)
plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='G painting for upper class',)
plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + bound[1], c='#74BCFF', lw=3, label='upper bound (class 1)')
plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + bound[0], c='#FF9359', lw=3, label='lower bound (class 1)')
plt.ylim((0, 3));plt.legend(loc='upper right', fontsize=10);plt.show()