forked from castorini/anserini
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ntcir8-zh.template
54 lines (35 loc) · 2.37 KB
/
ntcir8-zh.template
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Anserini Regressions: NTCIR-8 Monolingual Chinese
This page documents BM25 regression experiments for [NTCIR-8 ACLIA (IR4QA subtask), monolingual Chinese topics](http://research.nii.ac.jp/ntcir/ntcir-ws8/ws-en.html).
The description of the document collection can be found in the [NTCIR-8 data page](http://research.nii.ac.jp/ntcir/permission/ntcir-8/perm-en-ACLIA.html).
The exact configurations for these regressions are stored in [this YAML file](${yaml}).
Note that this page is automatically generated from [this template](${template}) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.
From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:
```
python src/main/python/run_regression.py --index --verify --search --regression ${test_name}
```
## Indexing
Typical indexing command:
```
${index_cmds}
```
The collection comprises Xinhua articles from 2002-2005, totaling 308,845 documents, from [LDC2007T38: Chinese Gigaword Third Edition](https://catalog.ldc.upenn.edu/LDC2007T38).
We build the index directly from the raw LDC data:
the directory `/path/to/ntcir8-zh/` should point to the directory `data/xin_cmn/` from LDC2007T38.
In that directory, there should be 48 gzipped files matching the pattern `xin_cmn_200[2-5]*`.
For additional details, see explanation of [common indexing options](${root_path}/docs/common-indexing-options.md).
## Retrieval
Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.
They are downloaded from the [NTCIR Test Collection page](https://www.nii.ac.jp/dsc/idr/en/ntcir/ntcir.html):
+ [`topics.ntcir8zh.eval.txt`](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels/topics.ntcir8zh.eval.txt): NTCIR-8 ACLIA (IR4QA subtask), monolingual Chinese topics
+ [`qrels.ntcir8.eval.txt`](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels/qrels.ntcir8.eval.txt): NTCIR-8 ACLIA (IR4QA subtask) relevance judgments
After indexing has completed, you should be able to perform retrieval as follows:
```
${ranking_cmds}
```
Evaluation can be performed using `trec_eval`:
```
${eval_cmds}
```
## Effectiveness
With the above commands, you should be able to reproduce the following results:
${effectiveness}