forked from castorini/anserini
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuclir22-zh-dt-splade.template
71 lines (45 loc) · 2.53 KB
/
neuclir22-zh-dt-splade.template
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Anserini Regressions: NeuCLIR22 — Chinese (Document Translation)
This page presents **document translation** regression experiments for the [TREC 2022 NeuCLIR Track](https://neuclir.github.io/), Chinese, with the following configuration:
+ Queries: English
+ Documents: Machine-translated documents from Chinese into English (corpus provided by the organizers)
+ Model: [SPLADE CoCondenser SelfDistil](https://huggingface.co/naver/splade-cocondenser-selfdistil)
The exact configurations for these regressions are stored in [this YAML file](${yaml}).
Note that this page is automatically generated from [this template](${template}) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.
We make available a version of the corpus that has already been encoded with [SPLADE CoCondenser SelfDistil](https://huggingface.co/naver/splade-cocondenser-selfdistil), i.e., we performed model inference on every document and stored the output sparse vectors.
Thus, no neural inference is required to reproduce these experiments; see instructions below.
From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:
```
python src/main/python/run_regression.py --index --verify --search --regression ${test_name}
```
## Corpus Download
Download the corpus and unpack into `collections/`:
```bash
wget https://rgw.cs.uwaterloo.ca/pyserini/data/neuclir22-zh-en-splade.tar -P collections/
tar xvf collections/neuclir22-zh-en-splade.tar -C collections/
```
To confirm, `neuclir22-zh-en-splade.tar` is 4.0 GB and has MD5 checksum `3ca6540bd4312db359975b9f90fad069`.
With the corpus downloaded, the following command will perform the remaining steps below:
```bash
python src/main/python/run_regression.py --index --verify --search --regression ${test_name} \
--corpus-path collections/${corpus}
```
## Indexing
Typical indexing command:
```
${index_cmds}
```
For additional details, see explanation of [common indexing options](${root_path}/docs/common-indexing-options.md).
## Retrieval
After indexing has completed, you should be able to perform retrieval as follows:
```
${ranking_cmds}
```
Evaluation can be performed using `trec_eval`:
```
${eval_cmds}
```
## Effectiveness
With the above commands, you should be able to reproduce the following results:
${effectiveness}
## Reproduction Log[*](${root_path}/docs/reproducibility.md)
To add to this reproduction log, modify [this template](${template}) and run `bin/build.sh` to rebuild the documentation.