-
Notifications
You must be signed in to change notification settings - Fork 5
/
Cortical_Soma_I_M.mod
75 lines (56 loc) · 1.53 KB
/
Cortical_Soma_I_M.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
TITLE Slow non-inactivating Potassium Current for Cortical Neuron Soma
COMMENT
Model Reference:
Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z.,
Bal, T., Frégnac, Y., Markram, H. and Destexhe, A., 2008.
"Minimal Hodgkin–Huxley type models for different classes of
cortical and thalamic neurons."
Biological cybernetics, 99(4-5), pp.427-441.
Implemented by John Fleming - [email protected] - 06/12/18
Edits:
ENDCOMMENT
UNITS {
(mV) = (millivolt)
(mA) = (milliamp)
(S) = (siemens)
}
NEURON {
SUFFIX cortical_soma_i_m
USEION k WRITE ik : Using k ion, treat the reversal potential as a parameter and write to ik so the total k current can be tracked
RANGE g_M, i_M : Potassium current, specific conductance and equilibrium potential
}
PARAMETER {
ek = -100 (mV)
i_M = 0.0 (mA/cm2) : Parameter to record this current separately to total sodium current
g_M = 7e-5 (S/cm2)
tau_max = 1000 (ms)
}
ASSIGNED {
v (mV)
ik (mA/cm2)
p_inf
tau_p (ms)
}
STATE {
p
}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = g_M*p*(v - ek)
i_M = ik : Record i_M (just this potassium current) to check it is working
}
UNITSOFF
INITIAL {
settables(v)
p = p_inf
}
DERIVATIVE states {
settables(v)
p' = (p_inf - p)/tau_p
}
PROCEDURE settables(v) {
TABLE p_inf, tau_p DEPEND tau_max FROM -100 TO 100 WITH 400
p_inf = 1/(1+exp(-(v+35)/10))
tau_p = tau_max/(3.3*exp((v+35)/20)+exp(-(v+35)/20))
}
UNITSON