-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure7_E.py
229 lines (186 loc) · 7.17 KB
/
figure7_E.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python
# coding: utf-8
# In[1]:
### import numpy as np
import neuron
import matplotlib.pyplot as plt
import numpy as np
h = neuron.h
#mechanims = ['kv1', 'hh_wbm']
#for mech in mechanims:
# neuron.load_mechanisms(mech)
dt = 0.01 #25
soma = h.Section()
soma.insert('pas')
soma.insert('nas')
soma.insert('kv3')
soma.insert('kv1')
# soma parameters
soma.diam = 20
soma.L = 126
soma.Ra = 100.0
soma.cm = 1.0 # membrane capacitance (muF/cm2)
surface = soma.L * (soma.diam * 0.5)**2 * np.pi
# channel parameters
# passive resistance and resting Vm
soma(0.5).g_pas = 0.00025
soma(0.5).e_pas = -65
soma(0.5).thetam_nas=-22
#Mess with stuff!
#soma(0.5).gkv3_kv3 = 0
# a-current
soma(0.5).gbar_kv1 = 0.005 # 0.01 returns interruption
a_current_tau_scale = 7.5
neuron.h('a0h_kv1 = ' + str(a_current_tau_scale))
soma(0.5).ek = -90 # (mV)
h.psection(sec=soma)
print('A-current tau scale = ' + str(a_current_tau_scale))
# square pulse with 'IPSP' ramp
delay = 100.0
max_amplitude = 0.45 #0.00055 # 0.02
reduction = 0.222 #0.5 # between 0 and 1
recovery = 200 # ramp duration
pre_duration = 1000.0 #1000.0
post_duration = 2500.0
min_amplitude = 0
backbaseline_duration = 1000
print('stim delay = ' + str(delay) + ' ms')
print('stim max amplitude = ' + str(max_amplitude) + ' nA')
print('stim reduction = ' + str(reduction))
print('stim recovery ramp = ' + str(recovery) + ' ms')
print('stim pre_duration = ' + str(pre_duration) + ' ms')
print('stim post_duration = ' + str(post_duration) + ' ms')
stim_amplitude = []
baseline_bins = int(delay / dt + 0.5)
for i in range(baseline_bins):
stim_amplitude.append(0.0)
pre_duration_bins = int(pre_duration / dt + 0.5)
for i in range(pre_duration_bins):
stim_amplitude.append(max_amplitude)
ipsp_duration_bins = int(recovery / dt + 0.5)
for i in range(ipsp_duration_bins):
rel_duration = 1.0 * i / ipsp_duration_bins
tmp_amplitude = (1 - reduction) * max_amplitude + rel_duration * reduction * max_amplitude
stim_amplitude.append(tmp_amplitude)
post_duration_bins = int(post_duration / dt + 0.5)
for i in range(post_duration_bins):
stim_amplitude.append(max_amplitude)
backbaseline_duration_bins = int(backbaseline_duration / dt + 0.5)
for i in range(backbaseline_duration_bins):
stim_amplitude.append(0.0)
stim_vec = h.Vector(stim_amplitude)
stim_electrode2 = h.IClamp(soma(0.5))
stim_electrode2.dur = 1e9
t_vec_stim = h.Vector([i * dt for i in range(len(stim_vec))])
stim_vec.play(stim_electrode2._ref_amp, t_vec_stim, 1)
# In[ ]:
subplotnum=1
for tex in [1400.0, 1600.00, 1800.0, 2000.00, 2200.0]:
for cond in range(10,200,10) :
##########################################################
# model of excitatory and inhibitory synaptic input
###########################################################
# parameters
# max. amplitude for E synaptic input; adjust until appropriate
e_syn_amp = cond*0.0001
# max. amplitude for I synaptic input; adjust until appropriate
#i_syn_amp = 10.000
# reversal potentials in mV
e_rev = -65.0 #0.0
#i_rev = -65.0
# rise and decay time constants; here I added typical values for AMPA and GABA-A receptors
e_tau_rise = 0.5
e_tau_decay = 1
#i_tau_rise = 1.0
#i_tau_decay = 20.0 #20 is default
# activation time of E synapse in ms
i_activation_time = tex
# now we set up the two synapses for NEURON; no changes required here
e_syn = h.Exp2Syn(soma(0.5))
e_syn.tau1 = e_tau_rise
e_syn.tau2 = e_tau_decay
e_syn.e = e_rev
i_stim_vec = h.Vector([i_activation_time])
vs_i = h.VecStim()
vs_i.play(i_stim_vec)
nc_i = h.NetCon(vs_i, e_syn)
nc_i.delay = 0.0
nc_i.weight[0] = e_syn_amp
nc_i.threshold = 0.0
###########################################################
# current_density = stim_electrode.amp / 1e3 / (surface / 1e8)
I_record = h.Vector()
Vm_record = h.Vector()
Ia_record = h.Vector()
Ina_record = h.Vector()
Mna_record = h.Vector()
Hna_record = h.Vector()
Nkv3_record = h.Vector()
qkv1_record = h.Vector()
qtau_record = h.Vector()
pkv1_record = h.Vector()
Ikv3_record = h.Vector()
I_record.record(stim_electrode2._ref_i)
Vm_record.record(soma(0.5)._ref_v)
Ia_record.record(soma(0.5)._ref_ik_kv1)
Ina_record.record(soma(0.5)._ref_ina_nas)
qkv1_record.record(soma(0.5)._ref_q_kv1)
pkv1_record.record(soma(0.5)._ref_p_kv1)
Mna_record.record(soma(0.5)._ref_m_nas)
Hna_record.record(soma(0.5)._ref_h_nas)
Nkv3_record.record(soma(0.5)._ref_n_kv3)
qtau_record.record(soma(0.5)._ref_qtau_kv1)
tVec = h.Vector()
tVec.record(h._ref_t)
neuron.h.load_file('stdrun.hoc')
neuron.h.dt = dt
# Temperature (NEURON default = 6.3)
temperature = 24
neuron.h.celsius = temperature
print('temperature = ' + str(temperature) + ' C')
# initial Vm
v_init = -65 # mV
neuron.h('v_init=' + str(v_init))
print('resting membrane potential = ' + str(v_init) + ' mV')
neuron.h('init()')
# Duration of simulation (in ms)
neuron.run(4500.0)
##############################
# New section
# copy everything in this section to your code
# after neuron.run(...)
##############################
import os.path
# adjust this filename to where you want to store the traces
# careful: please leave the letter r in front of the quotes,
# it is necessary so it works on Windows
output_name = "syn_runs_inht"+str(round(tex))+"cond"+str(cond)
output_name=output_name.replace(".","_")+".txt"
# here I just make a quick check if the file already exists
# so we don't overwrite it by accident
# if you want to overwrite it delete the old one first
#if os.path.exists(output_name):
# e = "File already exists!"
# raise RuntimeError(e)
# here we save the file as a simple .txt file
# first column time steps, second column Vm in mV, third column I in nA
with open(output_name, 'w') as output_file:
for i, t in enumerate(tVec):
out_line = '%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n' % (t, Vm_record[i], I_record[i], Ia_record[i], Ina_record[i],
qkv1_record[i], pkv1_record[i],Mna_record[i],Hna_record[i],Nkv3_record[i]
)
output_file.write(out_line)
##############################
# End new section
##############################
fig = plt.figure(1,figsize=(6,28))
ax1 = fig.add_subplot(20, 1, subplotnum)
ax1.plot(tVec, Vm_record)
ax1.set_ylabel(str(cond))
ax1.set_xlim(1000,3000)
subplotnum+=1
plot_name="syn_runs_inh"+str(round(tex))+".png"
plt.savefig(plot_name.replace(".","_"))
subplotnum=1
#plt.show()
# print current_density