-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpairwise_rerank_instupr.py
134 lines (117 loc) · 5.82 KB
/
pairwise_rerank_instupr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import argparse
import random
import math
import torch
import torch.nn.functional as F
from tqdm import tqdm
from openai import OpenAI
from transformers import T5ForConditionalGeneration, T5Tokenizer
"""
This script takes a run file and run pairwise reranking on n pairs sampled from all pairs using InstUPR.
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Pairwise reranking with duoT5')
parser.add_argument('--runfile', type=str, help='path to the run file', required=True)
parser.add_argument('--output', type=str, help='path to the output file', required=True)
parser.add_argument('--collection', type=str, help='path to collection.tsv', required=True)
parser.add_argument('--queries', type=str, help='path to queries.tsv', required=True)
parser.add_argument('--use_title', action='store_true', help='use the title of the passage as context')
parser.add_argument('--model', type=str, default="google/flan-t5-xl")
parser.add_argument('--openai', action='store_true', help='whether to use the openai api')
parser.add_argument('--n_pairs', type=int, default=100, help='number of pairs to rerank')
parser.add_argument('--batch_size', type=int, default=8, help='batch size for inference')
parser.add_argument('--max_length', type=int, default=1024, help='max length for inference')
parser.add_argument('--topk', type=int, default=100, help='number of topk passages for pairwise reranking')
parser.add_argument('--from_point', action='store_true', help='whether to load from pointwise reranking')
parser.add_argument('--softmax', action='store_true', help='whether to use softmax')
args = parser.parse_args()
# Read the collection
print("Reading the collection...")
collection = {}
with open(args.collection, 'r') as f:
for line in f:
if args.use_title:
docid, text, title = line.split('\t')
collection[docid] = title + " " + text
else:
docid, text = line.strip().split('\t')
collection[docid] = text
# Read the queries
print("Reading the queries...")
queries = {}
with open(args.queries, 'r') as f:
for line in f:
qid, text = line.strip().split('\t')
queries[qid] = text
# Read the run file
print("Reading the run file...")
run = {}
with open(args.runfile, 'r') as f:
if args.from_point:
for line in f:
qid, docid, score_true, score_false = line.strip().split('\t')
if qid not in run:
run[qid] = []
if args.softmax:
log_prob = F.softmax(torch.tensor([float(score_true), float(score_false)]), dim=0)[0].log().item()
else:
log_prob = float(score_true)
run[qid].append((docid, log_prob))
else:
for line in f:
qid, docid, rank, score = line.strip().split('\t')
if qid not in run:
run[qid] = []
run[qid].append((docid, float(score)))
if args.openai:
print("Using the OpenAI API...")
client = OpenAI()
else:
# Load the model
print("Loading the model...")
model = T5ForConditionalGeneration.from_pretrained(args.model, torch_dtype=torch.float16)
tokenizer = T5Tokenizer.from_pretrained(args.model, legacy=True, use_fast=True)
model.eval()
model = model.cuda()
# Filter the qids in run that are not in queries
qids = [qid for qid in run if qid in queries]
all_pairs = []
all_scores = []
for q_index, qid in enumerate(tqdm(qids)):
run[qid] = sorted(run[qid], key=lambda x: x[1], reverse=True)[:args.topk]
run[qid] = [docid for docid, _ in run[qid]]
pairs = []
for i in range(len(run[qid])):
# for j in range(i + 1, len(run[qid])):
for j in range(i + 1, min(i + 8, len(run[qid]))):
pairs.append((qid, run[qid][i], run[qid][j]))
# Sample n_pairs pairs
sampled_pairs = random.sample(pairs, args.n_pairs)
# sampled_pairs = pairs
# Rerank the pairs
inputs = []
for qid, docid1, docid2 in sampled_pairs:
inputs.append(f"Which document is more relevant to the query? Answer only 'A' or 'B'.\n\nQuery: {queries[qid]}\n\nDocument A: {collection[docid1]}\n\nDocument B: {collection[docid2]}")
if args.openai:
for prompt in inputs:
response = client.chat.completions.create(
model="gpt-3.5-turbo-0125",
messages=[
{"role": "system", "content": "You are a helpful assistant. Answer the question directly with 'A' or 'B'."},
{"role": "user", "content": prompt}
]
)
import ipdb; ipdb.set_trace()
else:
# batch inference
# batch_size = args.batch_size
for i in range(0, len(inputs), args.batch_size):
batch_inputs = inputs[i : i + args.batch_size]
batch_inputs = tokenizer(batch_inputs, return_tensors="pt", padding=True, truncation=True, max_length=args.max_length)
outputs = model.generate(batch_inputs['input_ids'].cuda(), attention_mask=batch_inputs['attention_mask'].cuda(), return_dict_in_generate=True, output_scores=True, max_new_tokens=1)
all_pairs.extend(sampled_pairs[i : i + args.batch_size])
all_scores.extend(outputs.scores[0][:, [71, 272]].cpu().tolist())
# Write the output
with open(args.output, 'w') as f:
for (qid, docid1, docid2), (score_true, score_false) in zip(all_pairs, all_scores):
f.write(f"{qid}\t{docid1}\t{docid2}\t{round(score_true, 6)}\t{round(score_false, 6)}\n")