#go源码阅读笔记(math.1)
##abs.go
func Abs(x float64) float64
package math
// Abs returns the absolute value of x.
//
// Special cases are:
// Abs(±Inf) = +Inf
// Abs(NaN) = NaN
func Abs(x float64) float64 {
// TODO: once golang.org/issue/13095 is fixed, change this to:
// return Float64frombits(Float64bits(x) &^ (1 << 63))
// But for now, this generates better code and can also be inlined:
if x < 0 {
return -x
}
if x == 0 {
return 0 // return correctly abs(-0)
}
return x
}
求一个数的绝对值Abs()函数
主要地方在于
if x == 0 { return 0 // return correctly abs(-0) }
这里是考虑当x=-0的场景,所以返回0
##bits.go
const (
uvnan = 0x7FF8000000000001
uvinf = 0x7FF0000000000000
uvneginf = 0xFFF0000000000000
mask = 0x7FF
shift = 64 - 11 - 1
bias = 1023
)
数值表示遵循IEEE 754标准
- uvnan,NaN, Not a Number
- uvinf,正无穷大
- uvneginf,负无穷大
函数func Inf(sign int) float64
// Inf returns positive infinity if sign >= 0, negative infinity if sign < 0.
func Inf(sign int) float64 {
var v uint64
if sign >= 0 {
v = uvinf
} else {
v = uvneginf
}
return Float64frombits(v)
}
如果sign是正数,就返回正无穷大,如果是负数就返回负无穷大
func NaN() float64
// NaN returns an IEEE 754 ``not-a-number'' value.
func NaN() float64 { return Float64frombits(uvnan) }
NaN()返回NaN值
func IsNaN(f float64) (is bool)
// IsNaN reports whether f is an IEEE 754 ``not-a-number'' value.
func IsNaN(f float64) (is bool) {
// IEEE 754 says that only NaNs satisfy f != f.
// To avoid the floating-point hardware, could use:
// x := Float64bits(f);
// return uint32(x>>shift)&mask == mask && x != uvinf && x != uvneginf
return f != f
}
该函数判断一个数是否是NaN 如果不想使用浮点硬件,可以按照注释所说的这种方式计算
x := Float64bits(f);
return uint32(x>>shift)&mask == mask && x != uvinf && x != uvneginf
uint32(x>>shift)&mask == mask,x的高12位为0x7FF x != uvinf,x不是正无穷大 x != uvneginf,x不是负无穷大
**func IsInf(f float64, sign int) bool **
// IsInf reports whether f is an infinity, according to sign.
// If sign > 0, IsInf reports whether f is positive infinity.
// If sign < 0, IsInf reports whether f is negative infinity.
// If sign == 0, IsInf reports whether f is either infinity.
func IsInf(f float64, sign int) bool {
// Test for infinity by comparing against maximum float.
// To avoid the floating-point hardware, could use:
// x := Float64bits(f);
// return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf;
return sign >= 0 && f > MaxFloat64 || sign <= 0 && f < -MaxFloat64
}
判断一个数是不是无穷大数
同样,如果不想使用浮点硬件,可以按照注释所说的这种方式计算
func normalize(x float64) (y float64, exp int)
// normalize returns a normal number y and exponent exp
// satisfying x == y × 2**exp. It assumes x is finite and non-zero.
func normalize(x float64) (y float64, exp int) {
const SmallestNormal = 2.2250738585072014e-308 // 2**-1022
if Abs(x) < SmallestNormal {
return x * (1 << 52), -52
}
return x, 0
}
这个不懂什么意思
遗留问题,MaxFloat64和-MaxFloat64是多少呢?
另一个
Float64frombits(v)像是把一个数转化成float64,是如何实现的呢?
##一些数学函数…… func Acosh(x float64) float64 返回x的反双曲余弦值 func Asin(x float64) float64 func Acos(x float64) float64 func Asinh(x float64) float64 func Atan(x float64) float64 func Atan2(y, x float64) float64 func Atanh(x float64) float64