-
Notifications
You must be signed in to change notification settings - Fork 1
/
FES_from_Reweighting.py
executable file
·508 lines (498 loc) · 18.4 KB
/
FES_from_Reweighting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
#! /usr/bin/env python3
### Get the FES estimate from reweighting. 1D or 2D only ###
# uses a weighted kernel density estimation, so it requires the bandwidth sigma
# usage is similar to plumed sum_hills
# NB: in case of multiple walkers one should combine them in a single file
# when using --stride or --skiprows one should sort them:
# sort -gs COLVAR.* > COLVAR
# when using --blocks it is better to concatenate them:
# cat COLVAR.* > COLVAR
import sys
import argparse
import numpy as np
import pandas as pd #much faster reading from file
do_bck=False #backup files in plumed style
if do_bck:
bck_script='bck.meup.sh' #e.g. place the script in your ~/bin
import subprocess
print('')
error='--- ERROR: %s \n'
### Parser stuff ###
parser = argparse.ArgumentParser(description='calculate the free energy surfase (FES) along the chosen collective variables (1 or 2) using a reweighted kernel density estimate')
# files
parser.add_argument('--colvar','-f',dest='filename',type=str,default='COLVAR',help='the COLVAR file name, with the collective variables and the bias')
parser.add_argument('--outfile','-o',dest='outfile',type=str,default='fes-rew.dat',help='name of the output file')
# compulsory
parser.add_argument('--sigma','-s',dest='sigma',type=str,required=True,help='the bandwidth for the kernel density estimation. Use e.g. the last value of sigma from an OPES_METAD simulation')
kbt_group=parser.add_mutually_exclusive_group(required=True)
kbt_group.add_argument('--kt',dest='kbt',type=float,help='the temperature in energy units')
kbt_group.add_argument('--temp',dest='temp',type=float,help='the temperature in Kelvin. Energy units is Kj/mol')
# input columns
parser.add_argument('--cv',dest='cv',type=str,default='2',help='the CVs to be used. Either by name or by column number, starting from 1')
parser.add_argument('--bias',dest='bias',type=str,default='.bias',help='the bias to be used. Either by name or by column number, starting from 1. Set to NO for nonweighted KDE')
# grid related
parser.add_argument('--min',dest='grid_min',type=str,help='lower bounds for the grid')
parser.add_argument('--max',dest='grid_max',type=str,help='upper bounds for the grid')
parser.add_argument('--bin',dest='grid_bin',type=str,default="100,100",help='number of bins for the grid')
# blocks
split_group=parser.add_mutually_exclusive_group(required=False)
split_group.add_argument('--blocks',dest='blocks_num',type=int,default=1,help='calculate errors with block average, using this number of blocks')
split_group.add_argument('--stride',dest='stride',type=int,default=0,help='print running FES estimate with this stride. Use --blocks for stride without history') #TODO make this more efficient
# other options
parser.add_argument('--deltaFat',dest='deltaFat',type=float,help='calculate the free energy difference between left and right of given cv1 value')
parser.add_argument('--skiprows',dest='skiprows',type=int,default=0,help='skip this number of initial rows')
parser.add_argument('--reverse',dest='reverse',action='store_true',default=False,help='reverse the time. Should be combined with --stride, without --skiprows')
parser.add_argument('--nomintozero',dest='nomintozero',action='store_true',default=False,help='do not shift the minimum to zero')
parser.add_argument('--der',dest='der',action='store_true',default=False,help='calculate also FES derivatives')
parser.add_argument('--fmt',dest='fmt',type=str,default='% 12.6f',help='specify the output format')
# parse everything, for better compatibility
args=parser.parse_args()
filename=args.filename
outfile=args.outfile
args_sigma=args.sigma
if args.kbt is not None:
kbt=args.kbt
else:
kbt=args.temp*0.0083144621
args_cv=args.cv
args_bias=args.bias
args_grid_min=args.grid_min
args_grid_max=args.grid_max
args_grid_bin=args.grid_bin
blocks_num=args.blocks_num
stride=args.stride
calc_deltaF=False
if args.deltaFat is not None:
calc_deltaF=True
ts=args.deltaFat
args_skiprows=args.skiprows
mintozero=(not args.nomintozero)
reverse=args.reverse
calc_der=args.der
fmt=args.fmt
### Get data ###
# get dim
dim=len(args_cv.split(','))
if dim==1:
dim2=False
elif dim==2:
dim2=True
else:
sys.exit(error%('only 1D and 2D are supported'))
# get cvs
f=open(filename,'r')
fields=f.readline().split()
if fields[1]!='FIELDS':
sys.exit(error%('no FIELDS found in "%s"'%filename))
try:
col_x=int(args_cv.split(',')[0])-1
name_cv_x=fields[col_x+2]
except ValueError:
col_x=-1
name_cv_x=args_cv.split(',')[0]
for i in range(len(fields)):
if fields[i]==name_cv_x:
col_x=i-2
if col_x==-1:
sys.exit(error%('cv "%s" not found'%name_cv_x))
if dim2:
try:
col_y=int(args_cv.split(',')[1])-1
name_cv_y=fields[col_y+2]
except ValueError:
col_y=-1
name_cv_y=args_cv.split(',')[1]
for i in range(len(fields)):
if fields[i]==name_cv_y:
col_y=i-2
if col_y==-1:
sys.exit(error%('cv "%s" not found'%name_cv_y))
# get bias
if args_bias=='NO' or args_bias=='no':
col_bias=[]
else:
try:
col_bias=[int(col)-1 for col in args_bias.split(',')]
except ValueError:
col_bias=[]
if args_bias=='.bias':
for i in range(len(fields)):
if fields[i].find('.bias')!=-1 or fields[i].find('.rbias')!=-1:
col_bias.append(i-2)
else:
for j in range(len(args_bias.split(','))):
for i in range(len(fields)):
if fields[i]==args_bias.split(',')[j]:
col_bias.append(i-2)
if len(col_bias)!=len(args_bias.split(',')):
sys.exit(error%('found %d matching biases, but %d were requested. Use columns number to avoid ambiguity'%(len(col_bias),len(args_bias.split(',')))))
print(' using cv "%s" found at column %d'%(name_cv_x,col_x+1))
if dim2:
print(' using cv "%s" found at column %d'%(name_cv_y,col_y+1))
if len(col_bias)==0:
print(' no bias')
for col in col_bias:
print(' using bias "%s" found at column %d'%(fields[col+2],col+1))
# get periodicity
period_x=0
period_y=0
header_lines=1
line=f.readline().split()
while line[0]=='#!':
header_lines+=1
if line[2]=='min_'+name_cv_x:
if line[3]=='-pi':
grid_min_x=-np.pi
else:
grid_min_x=float(line[3])
line=f.readline().split()
header_lines+=1
if line[2]!='max_'+name_cv_x:
sys.exit(error%('min_%s was found, but not max_%s !'%(name_cv_x,name_cv_x)))
if line[3]=='pi':
grid_max_x=np.pi
else:
grid_max_x=float(line[3])
period_x=grid_max_x-grid_min_x
if calc_der:
sys.exit(error%('derivatives not supported with periodic CVs, remove --der option'))
if dim2 and line[2]=='min_'+name_cv_y:
if line[3]=='-pi':
grid_min_y=-np.pi
else:
grid_min_y=float(line[3])
line=f.readline().split()
header_lines+=1
if line[2]!='max_'+name_cv_y:
sys.exit(error%('min_%s was found, but not max_%s !'%(name_cv_y,name_cv_y)))
if line[3]=='pi':
grid_max_y=np.pi
else:
grid_max_y=float(line[3])
period_y=grid_max_y-grid_min_y
if calc_der:
sys.exit(error%('derivatives not supported with periodic CVs, remove --der option'))
line=f.readline().split()
f.close()
skipme=header_lines+args_skiprows
# get sigma
sigma_x=float(args_sigma.split(',')[0])
if dim2:
if len(args_sigma.split(','))!=2:
sys.exit(error%(' two comma-separated floats expected after --sigma'))
sigma_y=float(args_sigma.split(',')[1])
# read file
all_cols=[col_x]+col_bias
if dim2:
all_cols=[col_x,col_y]+col_bias
all_cols.sort() #pandas iloc reads them ordered
data=pd.read_table(filename,dtype=float,sep='\s+',comment='#',header=None,usecols=all_cols,skiprows=skipme)
if data.isnull().values.any():
sys.exit(error%('your COLVAR file contains NaNs. Check if last line is truncated'))
if reverse:
data=data.iloc[::-1]
cv_x=np.array(data.iloc[:,all_cols.index(col_x)])
if dim2:
cv_y=np.array(data.iloc[:,all_cols.index(col_y)])
bias=np.zeros(len(cv_x)) #it could be that there is no bias
for col in col_bias:
bias+=np.array(data.iloc[:,all_cols.index(col)])
bias/=kbt #dimensionless bias
del data
size=0
effsize=0
### Prepare the grid ###
grid_bin_x=int(args_grid_bin.split(',')[0])
if period_x==0:
grid_bin_x+=1 #same as plumed sum_hills
if args_grid_min is None:
if period_x==0: #otherwise is already set
grid_min_x=min(cv_x)
else:
if args_grid_min.split(',')[0]=='-pi':
grid_min_x=-np.pi
else:
grid_min_x=float(args_grid_min.split(',')[0])
if args_grid_max is None:
if period_x==0: #otherwise is already set
grid_max_x=max(cv_x)
else:
if args_grid_max.split(',')[0]=='pi':
grid_max_x=np.pi
else:
grid_max_x=float(args_grid_max.split(',')[0])
grid_cv_x=np.linspace(grid_min_x,grid_max_x,grid_bin_x)
fes=np.zeros(grid_bin_x)
if calc_der:
der_fes_x=np.zeros(grid_bin_x)
if dim2:
if len(args_grid_bin.split(','))!=2:
sys.exit(error%('two comma separated integers expected after --bin'))
grid_bin_y=int(args_grid_bin.split(',')[1])
if period_y==0:
grid_bin_y+=1 #same as plumed sum_hills
if args_grid_min is None:
if period_y==0: #otherwise is already set
grid_min_y=min(cv_y)
else:
if len(args_grid_min.split(','))!=2:
sys.exit(error%('two comma separated floats expected after --min'))
if args_grid_min.split(',')[1]=='-pi':
grid_min_y=-np.pi
else:
grid_min_y=float(args_grid_min.split(',')[1])
if args_grid_max is None:
if period_y==0: #otherwise is already set
grid_max_y=max(cv_y)
else:
if len(args_grid_max.split(','))!=2:
sys.exit(error%('two comma separated floats expected after --max'))
if args_grid_max.split(',')[1]=='pi':
grid_max_y=np.pi
else:
grid_max_y=float(args_grid_max.split(',')[1])
grid_cv_y=np.linspace(grid_min_y,grid_max_y,grid_bin_y)
x,y=np.meshgrid(grid_cv_x,grid_cv_y,indexing='ij')
fes=np.zeros((grid_bin_x,grid_bin_y))
if calc_der:
der_fes_x=np.zeros((grid_bin_x,grid_bin_y))
der_fes_y=np.zeros((grid_bin_x,grid_bin_y))
deltaF=0
if calc_deltaF and (ts<=grid_min_x or ts>=grid_max_x):
print(' +++ WARNING: the provided --deltaFat is out of the CV grid +++')
calc_deltaF=False
### Print to file ###
# setup blocks if needed
len_tot=len(cv_x)
block_av=False
if blocks_num!=1:
if calc_der:
sys.exit(error%('derivatives not supported with --blocks, remove --der option'))
block_av=True
stride=int(len_tot/blocks_num)
blocks_num=int(len_tot/stride) #with big numbers this is safer
block_logweight=np.zeros(blocks_num)
block_fes=np.zeros((blocks_num,)+np.shape(fes))
if stride==0 or stride>len_tot:
stride=len_tot
if stride!=len_tot:
blocks_num=int(len_tot/stride)
print(' printing %d FES files, one every %d samples'%(blocks_num,stride))
if outfile.rfind('/')==-1:
prefix=''
outfile_it=outfile
else:
prefix=outfile[:outfile.rfind('/')]
if prefix+'/'==outfile:
outfile+='fes-rew.dat'
outfile_it=outfile[outfile.rfind('/'):]
if outfile_it.rfind('.')==-1:
suffix=''
else:
suffix=outfile_it[outfile_it.rfind('.'):]
outfile_it=outfile_it[:outfile_it.rfind('.')]
outfile_it=prefix+outfile_it+'_%d'+suffix
# print function needs the grid and size, effsize, fes, der_fes
def printFES(outfilename):
if do_bck:
cmd=subprocess.Popen(bck_script+' -i '+outfilename,shell=True)
cmd.wait()
if mintozero:
shift=np.amin(fes)
else:
shift=0
# calculate deltaF
# NB: summing is as accurate as trapz, and logaddexp avoids overflows
if calc_deltaF:
if not dim2:
fesA=-kbt*np.logaddexp.reduce(-1/kbt*fes[grid_cv_x<ts])
fesB=-kbt*np.logaddexp.reduce(-1/kbt*fes[grid_cv_x>ts])
else:
fesA=-kbt*np.logaddexp.reduce(-1/kbt*fes[x<ts])
fesB=-kbt*np.logaddexp.reduce(-1/kbt*fes[x>ts])
deltaF=fesB-fesA
#actual printing
f=open(outfilename,'w')
fields='#! FIELDS '+name_cv_x
if dim2:
fields+=' '+name_cv_y
fields+=' file.free'
if calc_der:
fields+=' der_'+name_cv_x
if dim2:
fields+=' der_'+name_cv_y
f.write(fields+'\n')
f.write('#! SET sample_size %d\n'%size)
f.write('#! SET effective_sample_size %g\n'%effsize)
if calc_deltaF:
f.write('#! SET DeltaF %g\n'%(deltaF))
f.write('#! SET min_'+name_cv_x+' %g\n'%(grid_min_x))
f.write('#! SET max_'+name_cv_x+' %g\n'%(grid_max_x))
f.write('#! SET nbins_'+name_cv_x+' %g\n'%(grid_bin_x))
if period_x==0:
f.write('#! SET periodic_'+name_cv_x+' false\n')
else:
f.write('#! SET periodic_'+name_cv_x+' true\n')
if not dim2:
for i in range(grid_bin_x):
line=(fmt+' '+fmt)%(grid_cv_x[i],fes[i]-shift)
if calc_der:
line+=(' '+fmt)%(der_fes_x[i])
f.write(line+'\n')
else:
f.write('#! SET min_'+name_cv_y+' %g\n'%(grid_min_y))
f.write('#! SET max_'+name_cv_y+' %g\n'%(grid_max_y))
f.write('#! SET nbins_'+name_cv_y+' %g\n'%(grid_bin_y))
if period_y==0:
f.write('#! SET periodic_'+name_cv_y+' false\n')
else:
f.write('#! SET periodic_'+name_cv_y+' true\n')
for i in range(grid_bin_x):
for j in range(grid_bin_y):
line=(fmt+' '+fmt+' '+fmt)%(x[i,j],y[i,j],fes[i,j]-shift)
if calc_der:
line+=(' '+fmt+' '+fmt)%(der_fes_x[i,j],der_fes_y[i,j])
f.write(line+'\n')
f.write('\n')
f.close()
### Calculate FES ###
# on single grid point
def calcFESpoint(start,end,point_x,point_y=None):
if period_x==0:
dist_x=(point_x-cv_x[start:end])/sigma_x
else:
dx=np.absolute(point_x-cv_x[start:end])
dist_x=np.minimum(dx,period_x-dx)/sigma_x
arg=bias[start:end]-0.5*dist_x*dist_x
if point_y is not None:
if period_y==0:
dist_y=(point_y-cv_y[start:end])/sigma_y
else:
dy=np.absolute(point_y-cv_y[start:end])
dist_y=np.minimum(dy,period_y-dy)/sigma_y
arg-=0.5*dist_y*dist_y
if calc_der:
arg_max=np.amax(arg)
safe_kernels=np.exp(arg-arg_max)
safe_prob=np.sum(safe_kernels)
_fes=-kbt*(arg_max+np.log(safe_prob))
_der_fes_x=-kbt*(np.sum(-dist_x/sigma_x*safe_kernels)/safe_prob)
if point_y is None:
return _fes,_der_fes_x
else:
_der_fes_y=-kbt*(np.sum(-dist_y/sigma_y*safe_kernels)/safe_prob)
return _fes,_der_fes_x,_der_fes_y
else:
return -kbt*np.logaddexp.reduce(arg)
# adjust stride
s=len_tot%stride #skip some initial point to make it fit
if s>1:
print(' first %d samples discarded to fit with given stride'%s)
it=1
for n in range(s+stride,len_tot+1,stride):
if stride!=len_tot:
print(' working... 0% of {:.0%}'.format(n/(len_tot+1)),end='\r')
# loop over whole grid
if not dim2:
for i in range(grid_bin_x):
print(' working... {:.0%}'.format(i/grid_bin_x),end='\r')
if not calc_der:
fes[i]=calcFESpoint(s,n,grid_cv_x[i])
else:
fes[i],der_fes_x[i]=calcFESpoint(s,n,grid_cv_x[i])
else:
for i in range(grid_bin_x):
print(' working... {:.0%}'.format(i/grid_bin_x),end='\r')
for j in range(grid_bin_y):
if not calc_der:
fes[i,j]=calcFESpoint(s,n,x[i,j],y[i,j])
else:
fes[i,j],der_fes_x[i,j],der_fes_y[i,j]=calcFESpoint(s,n,x[i,j],y[i,j])
# calculate sample size
weights=np.exp(bias[s:n]-np.amax(bias[s:n])) #these are safe to sum
size=len(weights)
effsize=np.sum(weights)**2/np.sum(weights**2)
# get useful things for block average
if block_av or not mintozero:
bias_norm_shift=np.logaddexp.reduce(bias[s:n])
fes+=kbt*bias_norm_shift
if block_av:
block_logweight[it-1]=bias_norm_shift
block_fes[it-1]=fes
s=n #do not include previous samples
# print to file
if stride==len_tot:
printFES(outfile)
else:
printFES(outfile_it%it)
it+=1
if block_av:
print('+++ IMPORTANT: remember to try different numbers of blocks and check for the convergence of the uncertainty estimate +++')
print(' printing final FES with block average to',outfile)
start=len_tot%stride
size=len_tot-start
weights=np.exp(bias[start:]-np.amax(bias[start:]))
effsize=np.sum(weights)**2/np.sum(weights**2)
safe_block_weight=np.exp(block_logweight-np.amax(block_logweight))
blocks_neff=np.sum(safe_block_weight)**2/np.sum(safe_block_weight**2)
print(' number of blocks is %d, while effective number is %g'%(blocks_num,blocks_neff))
fes=-kbt*np.log(np.average(np.exp(-block_fes/kbt),axis=0,weights=safe_block_weight))
# To understand the formula for fes_err:
# - calc the uncertainty over the probability=exp(-fes/kbt). this is a simple weighted average of all the gaussians evauated in that grid position
# - propagate the uncertainty from there to the fes, neglecting correlations for simplicity
# NB: the following np.exp cannot be easily made 100% numerically safe, but using np.expm1 makes it more robust
fes_err=kbt*np.sqrt(1/(blocks_neff-1)*(np.average(np.expm1(-(block_fes-fes)/kbt)**2,axis=0,weights=safe_block_weight)))
print(' average FES uncertainty is:',np.average(fes_err))
# print to file (slightly different than usual)
if do_bck:
cmd=subprocess.Popen(bck_script+' -i '+outfile,shell=True)
cmd.wait()
if mintozero:
fes-=np.amin(fes)
# calculate deltaF
# NB: summing is as accurate as trapz, and logaddexp avoids overflows
if calc_deltaF:
if not dim2:
fesA=-kbt*np.logaddexp.reduce(-1/kbt*fes[grid_cv_x<ts])
fesB=-kbt*np.logaddexp.reduce(-1/kbt*fes[grid_cv_x>ts])
else:
fesA=-kbt*np.logaddexp.reduce(-1/kbt*fes[x<ts])
fesB=-kbt*np.logaddexp.reduce(-1/kbt*fes[x>ts])
deltaF=fesB-fesA
# actual printing
f=open(outfile,'w')
fields='#! FIELDS '+name_cv_x
if dim2:
fields+=' '+name_cv_y
fields+=' file.free uncertainty'
f.write(fields+'\n')
f.write('#! SET sample_size %d\n'%size)
f.write('#! SET effective_sample_size %g\n'%effsize)
if calc_deltaF:
f.write('#! SET DeltaF %g\n'%(deltaF))
f.write('#! SET blocks_num %d\n'%blocks_num)
f.write('#! SET blocks_effective_num %g\n'%blocks_neff)
f.write('#! SET min_'+name_cv_x+' %g\n'%(grid_min_x))
f.write('#! SET max_'+name_cv_x+' %g\n'%(grid_max_x))
f.write('#! SET nbins_'+name_cv_x+' %g\n'%(grid_bin_x))
if period_x==0:
f.write('#! SET periodic_'+name_cv_x+' false\n')
else:
f.write('#! SET periodic_'+name_cv_x+' true\n')
if not dim2:
for i in range(grid_bin_x):
f.write((fmt+' '+fmt+' '+fmt+'\n')%(grid_cv_x[i],fes[i],fes_err[i]))
else:
f.write('#! SET min_'+name_cv_y+' %g\n'%(grid_min_y))
f.write('#! SET max_'+name_cv_y+' %g\n'%(grid_max_y))
f.write('#! SET nbins_'+name_cv_y+' %g\n'%(grid_bin_y))
if period_y==0:
f.write('#! SET periodic_'+name_cv_y+' false\n')
else:
f.write('#! SET periodic_'+name_cv_y+' true\n')
for i in range(grid_bin_x):
for j in range(grid_bin_y):
f.write((fmt+' '+fmt+' '+fmt+' '+fmt+'\n')%(x[i,j],y[i,j],fes[i,j],fes_err[i,j]))
f.write('\n')
f.close()
print(' ')