-
Notifications
You must be signed in to change notification settings - Fork 1
/
umbrella_production.slurm
47 lines (35 loc) · 1.45 KB
/
umbrella_production.slurm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/bin/sh
#SBATCH -p gpu
#SBATCH -C h100
#SBATCH -n 1
#SBATCH --gpus-per-node=1
#SBATCH --cpus-per-gpu=8
#SBATCH --ntasks-per-node=1
#SBATCH --time=1-00:00:00
module purge
module load modules/2.1.1-20230405
#you can use newer cuda if you like but be careful it needs to be the one you installed openmm with.
#export MODULEPATH=/mnt/home/gkrawezik/modules/rocky8:$MODULEPATH
#module load cuda/12.1
#export OPENMM_CUDA_COMPILER=/mnt/home/gkrawezik/local/rocky8/cuda/12.1/bin/nvcc
#load in cuda and tell openmm where to find the cuda compiler
module load cuda/11.8
export OPENMM_CUDA_COMPILER=/mnt/sw/nix/store/3xpm36w2kcri3j1m5j15hg025my1p4kx-cuda-11.8.0/bin/nvcc
conda activate openmm_workflow
#number of steps to run
n_steps=4
init="out"
equil_prefix="equil_pull"
prod_prefix="umbrella_production"
if [ ! -e prod_1.rst ] ;
then
input_param=" -ff amber -t toppar.str -p ${init}.parm7 -c $init.rst7 -irst $equil_prefix.rst --restart-timer "
python -m openmm_workflow.umbrella -i ${prod_prefix}.inp ${input_param} -orst prod_1.rst -odcd prod_1.dcd --platform CUDA --restart-timer
else
prev_steps=$(ls prod_*\.rst | wc -l)
curr_step=$(($prev_steps + 1 ))
prod_name=prod_$curr_step
input_param=" -ff amber -t toppar.str -p ${init}.parm7 -c ${init}.rst7 -irst prod_${prev_steps}.rst "
python -m openmm_workflow.umbrella -i ${prod_prefix}.inp ${input_param} -orst ${prod_name}.rst -odcd ${prod_name}.dcd --platform CUDA
fi
sbatch prod.slurm