forked from IGNF/myria3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
executable file
·51 lines (38 loc) · 1.78 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import comet_ml
import dotenv
import hydra
from omegaconf import DictConfig, OmegaConf
# load environment variables from `.env` file if it exists
# recursively searches for `.env` in all folders starting from work dir
dotenv.load_dotenv(override=True)
@hydra.main(config_path="configs/", config_name="config.yaml")
def main(config: DictConfig):
"""Entrypoint to training-related logic and inference code.
Run `python run.py -h` to print configuration and see parameters.
Hydra configs can be overriden in CLI with `--config-path` and `--config-name` arguments.
"""
# Imports should be nested inside @hydra.main to optimize tab completion
# Read more here: https://github.com/facebookresearch/hydra/issues/934
from lidar_multiclass.utils import utils
from lidar_multiclass.train import train
from lidar_multiclass.predict import predict
# A couple of optional utilities:
# - disabling python warnings
# - easier access to debug mode
# - forcing debug friendly configuration
# You can safely get rid of this line if you don't want those
utils.extras(config)
# Pretty print config using Rich library
if config.get("print_config"):
utils.print_config(config, resolve=False)
task_name = config.task.get("task_name")
if "fit" in task_name or "test" in task_name or "finetune" in task_name:
"""Training, eval, and test of a neural network."""
return train(config)
elif config.task.get("task_name") == "predict":
"""Infer probabilities and automate semantic segmentation decisions on unseen data."""
return predict(config)
if __name__ == "__main__":
# cf. https://github.com/facebookresearch/hydra/issues/1283
OmegaConf.register_new_resolver("get_method", hydra.utils.get_method)
main()