forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactionNet.h
223 lines (188 loc) · 8.85 KB
/
actionNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/*
* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __ACTION_NET_H__
#define __ACTION_NET_H__
#include "tensorNet.h"
/**
* Name of default input blob for actionNet model.
* @ingroup actionNet
*/
#define ACTIONNET_DEFAULT_INPUT "input"
/**
* Name of default output confidence values for actionNet model.
* @ingroup actionNet
*/
#define ACTIONNET_DEFAULT_OUTPUT "output"
/**
* The model type for actionNet in data/networks/models.json
* @ingroup actionNet
*/
#define ACTIONNET_MODEL_TYPE "action"
/**
* Standard command-line options able to be passed to actionNet::Create()
* @ingroup actionNet
*/
#define ACTIONNET_USAGE_STRING "actionNet arguments: \n" \
" --network=NETWORK pre-trained model to load, one of the following:\n" \
" * resnet-18 (default)\n" \
" * resnet-34\n" \
" --model=MODEL path to custom model to load (.onnx)\n" \
" --labels=LABELS path to text file containing the labels for each class\n" \
" --input-blob=INPUT name of the input layer (default is '" ACTIONNET_DEFAULT_INPUT "')\n" \
" --output-blob=OUTPUT name of the output layer (default is '" ACTIONNET_DEFAULT_OUTPUT "')\n" \
" --threshold=CONF minimum confidence threshold for classification (default is 0.01)\n" \
" --skip-frames=SKIP how many frames to skip between classifications (default is 1)\n" \
" --profile enable layer profiling in TensorRT\n\n"
/**
* Action/activity classification on a sequence of images or video, using TensorRT.
* @ingroup actionNet
*/
class actionNet : public tensorNet
{
public:
/**
* Load a pre-trained model, either "resnet-18" or "resnet-34".
*/
static actionNet* Create( const char* network="resnet-18", uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE,
precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU,
bool allowGPUFallback=true );
/**
* Load a new network instance
* @param prototxt_path File path to the deployable network prototxt
* @param model_path File path to the caffemodel
* @param mean_binary File path to the mean value binary proto (can be NULL)
* @param class_labels File path to list of class name labels
* @param input Name of the input layer blob.
* @param output Name of the output layer blob.
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static actionNet* Create( const char* model_path, const char* class_labels,
const char* input=ACTIONNET_DEFAULT_INPUT,
const char* output=ACTIONNET_DEFAULT_OUTPUT,
uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE,
precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true );
/**
* Load a new network instance by parsing the command line.
*/
static actionNet* Create( int argc, char** argv );
/**
* Load a new network instance by parsing the command line.
*/
static actionNet* Create( const commandLine& cmdLine );
/**
* Usage string for command line arguments to Create()
*/
static inline const char* Usage() { return ACTIONNET_USAGE_STRING; }
/**
* Destroy
*/
virtual ~actionNet();
/**
* Append an image to the sequence and classify the action, returning the index of the top class.
* Either the class with the maximum confidence will be returned, or -1 if no class meets
* the threshold set by SetThreshold() or the `--threshold` command-line argument.
*
* If this frame was skipped due to SetSkipFrames() being used, then the last frame's results will
* be returned. By default, every other frame is skipped in order to lengthen the action's window.
*
* @param image input image in CUDA device memory.
* @param width width of the input image in pixels.
* @param height height of the input image in pixels.
* @param confidence optional pointer to float filled with confidence value.
* @returns Index of the maximum likelihood class, or -1 on error.
*/
template<typename T> int Classify( T* image, uint32_t width, uint32_t height, float* confidence=NULL ) { return Classify((void*)image, width, height, imageFormatFromType<T>(), confidence); }
/**
* Append an image to the sequence and classify the action, returning the index of the top class.
* Either the class with the maximum confidence will be returned, or -1 if no class meets
* the threshold set by SetThreshold() or the `--threshold` command-line argument.
*
* If this frame was skipped due to SetSkipFrames() being used, then the last frame's results will
* be returned. By default, every other frame is skipped in order to lengthen the action's window.
*
* @param image input image in CUDA device memory.
* @param width width of the input image in pixels.
* @param height height of the input image in pixels.
* @param confidence optional pointer to float filled with confidence value.
* @returns Index of the maximum likelihood class, or -1 on error.
*/
int Classify( void* image, uint32_t width, uint32_t height, imageFormat format, float* confidence=NULL );
/**
* Retrieve the number of image recognition classes
*/
inline uint32_t GetNumClasses() const { return mNumClasses; }
/**
* Retrieve the description of a particular class.
*/
inline const char* GetClassLabel( int index ) const { return GetClassDesc(index); }
/**
* Retrieve the description of a particular class.
*/
inline const char* GetClassDesc( int index ) const { return index >= 0 ? mClassDesc[index].c_str() : "none"; }
/**
* Retrieve the path to the file containing the class descriptions.
*/
inline const char* GetClassPath() const { return mClassPath.c_str(); }
/**
* Return the confidence threshold used for classification.
*/
inline float GetThreshold() const { return mThreshold; }
/**
* Set the confidence threshold used for classification.
* Classes with a confidence below this threshold will be ignored.
* @note this can also be set using the `--threshold=N` command-line argument.
*/
inline void SetThreshold( float threshold ) { mThreshold = threshold; }
/**
* Return the number of frames that are skipped in between classifications.
* @see SetFrameSkip for more info.
*/
inline uint32_t GetSkipFrames() const { return mSkipFrames; }
/**
* Set the number of frames that are skipped in between classifications.
* Since actionNet operates on video sequences, it's often helpful to skip frames
* to lengthen the window of time the model gets to 'see' an action being performed.
*
* The default setting is 1, where every other frame is skipped.
* Setting this to 0 will disable it, and every frame will be processed.
* When a frame is skipped, the classification results from the last frame are returned.
*/
inline void SetSkipFrames( uint32_t frames ) { mSkipFrames = frames; }
protected:
actionNet();
bool init( const char* model_path, const char* class_path, const char* input, const char* output, uint32_t maxBatchSize, precisionType precision, deviceType device, bool allowGPUFallback );
bool preProcess( void* image, uint32_t width, uint32_t height, imageFormat format );
float* mInputBuffers[2];
uint32_t mNumClasses;
uint32_t mNumFrames; // number of frames fed into the model
uint32_t mSkipFrames; // number of frames to skip when processing
uint32_t mFramesSkipped; // frame skip counter
uint32_t mCurrentInputBuffer;
uint32_t mCurrentFrameIndex;
float mThreshold;
float mLastConfidence;
int mLastClassification;
std::vector<std::string> mClassDesc;
std::string mClassPath;
};
#endif