-
Notifications
You must be signed in to change notification settings - Fork 0
/
BinarySearchTree.java
426 lines (384 loc) · 10.3 KB
/
BinarySearchTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import java.util.Comparator;
public class BinarySearchTree<T extends Comparable<T>> {
class TreeNode {
T data;
TreeNode left;
TreeNode right;
TreeNode(T data) {
this.data = data;
}
}
TreeNode root;
boolean insert(T data) {
if (root == null) {
root = new TreeNode(data);
return true;
}
TreeNode current = root;
TreeNode parent = root;
while (current != null) {
int val = current.data.compareTo(data);
if (val < 0) {
parent = current;
current = current.right;
} else if (val == 0) {
// If an existing node has the same value, do not insert.
return false;
} else {
parent = current;
current = current.left;
}
}
TreeNode added = new TreeNode(data);
if (parent.data.compareTo(data) < 0) {
parent.right = added;
} else {
parent.left = added;
}
return true;
}
TreeNode search(T data) {
TreeNode current = root;
while (current != null) {
int val = current.data.compareTo(data);
if (val < 0) {
current = current.right;
} else if (val == 0) {
return current;
} else {
current = current.left;
}
}
return null;
}
void inOrder() {
recursiveInOrder(root, 0);
}
private void recursiveInOrder(TreeNode current, int level) {
if (current == null) {
return;
}
recursiveInOrder(current.left, level + 1);
for (int i = 0; i < level; ++i) {
System.out.print("---|");
}
System.out.println(current.data);
recursiveInOrder(current.right, level + 1);
}
void preOrder() {
recursivePreOrder(root, 0);
}
private void recursivePreOrder(TreeNode current, int level) {
if (current == null) {
return;
}
for (int i = 0; i < level; ++i) {
System.out.print("---|");
}
System.out.println(current.data);
recursivePreOrder(current.left, level + 1);
recursivePreOrder(current.right, level + 1);
}
void postOrder() {
recursivePostOrder(root, 0);
}
private void recursivePostOrder(TreeNode current, int level) {
if (current == null) {
return;
}
recursivePostOrder(current.left, level + 1);
recursivePostOrder(current.right, level + 1);
for (int i = 0; i < level; ++i) {
System.out.print("---|");
}
System.out.println(current.data);
}
void heightOrder() {
Queue<TreeNode> queue = new Queue<>();
if (root != null) {
queue.Push(root);
}
int level = 0;
while (!queue.IsEmpty()) {
int elements = queue.Count();
while(elements-- > 0) {
for (int i = 0; i < level; ++i) {
System.out.print("---|");
}
TreeNode node = queue.Pop();
System.out.println(node.data);
if (node.left != null) {
queue.Push(node.left);
}
if (node.right != null) {
queue.Push(node.right);
}
}
level++;
}
}
// ============================================================
// All functions defined below are for Lab 3 - Tree Balancing.
// ============================================================
/**
* Balance this tree.
*/
public void balanceThisTree() {
if (root == null) {
return; // empty tree, just return.
}
TreeNode dummy = new TreeNode(root.data);
dummy.left = root; // It is also ok to do `dummy.right = root;`
degenerateRotationInPlace(root, dummy, true);
// After balanced, the root might have changed, so must reset the root node value.
root = dummy.left;
}
/**
* Balance binary search tree rooted in {@param cur}. {@param parent} is parent node of {@param
* cur}, {@param isLeftChild} indicates whether {@param cur} is left child of {@param parent} or
* not.
*
* The idea for balancing is keep balancing {@param cur} as long as tree rooted in {@param cur} is
* not balanced; once {@param cur} is balanced, we continue call this function for left and right
* child of {@param cur}.
*
* 1) suppose binary search tree starts with
* <pre>
* 7
* /
* 6
* /
* 5
* /
* 4
* /
* 3
* /
* 2
* /
* 1
* </pre>
* 2) root rotate to right
* <pre>
* 6
* / \
* 5 7
* /
* 4
* /
* 3
* /
* 2
* /
* 1
* </pre>
* 3) the new root rotate to right
* <pre>
* 5
* / \
* 4 6
* / \
* 3 7
* /
* 2
* /
* 1
* </pre>
* 4) the new root rotate to right
* <pre>
* 4
* / \
* 3 5
* / \
* 2 6
* / \
* 1 7
* </pre>
* 4) left subtree rotate to right and right subtree rotate to left
* <pre>
* 4
* / \
* 2 6
* / \ / \
* 1 3 5 7
* </pre>
*/
private void degenerateRotationInPlace(TreeNode cur, TreeNode parent, boolean isLeftChild) {
int balance = checkBalanced(cur);
while (balance <= -2 || balance >= 2) {
if (balance <= -2) {
cur = rotateToLeft(cur, parent, isLeftChild);
} else if (balance >= 2) {
cur = rotateToRight(cur, parent, isLeftChild);
}
balance = checkBalanced(cur);
}
// Now let's continue balance its left subtree
if (cur.left != null) {
degenerateRotationInPlace(cur.left, cur, true);
}
// Now let's continue balance its right subtree
if (cur.right != null) {
degenerateRotationInPlace(cur.right, cur, false);
}
}
/**
* Rotate to right based on {@param cur}.
*
* 1) Suppose {@param cur} is left child of {@param parent}:
* <pre>
* parent
* /
* cur
* / \
* Z W
* / \
* X Y
* </pre>
* After rotate to right, we will get
* <pre>
* parent
* /
* Z
* / \
* X cur
* / \
* Y W
* </pre>
*
* 2) Suppose {@param cur} is right child of {@param parent}:
* <pre>
* parent
* \
* cur
* / \
* Z W
* / \
* X Y
* </pre>
* After rotate to right, we will get
* <pre>
* parent
* \
* Z
* / \
* X cur
* / \
* Y W
* </pre>
*
* @param cur
* @param parent
* @param isLeftChild
* @return the new root, i.e. the new child of {@param parent} node.
*/
private TreeNode rotateToRight(TreeNode cur, TreeNode parent, boolean isLeftChild) {
if (isLeftChild) {
parent.left = cur.left;
cur.left = cur.left.right;
parent.left.right = cur;
return parent.left;
} else {
parent.right = cur.left;
cur.left = cur.left.right;
parent.right.right = cur;
return parent.right;
}
}
/**
* Rotate to left based on {@param cur}.
*
* 1) Suppose {@param cur} is left child of {@param parent}:
* <pre>
* parent
* /
* cur
* / \
* Z W
* / \
* X Y
* </pre>
* After rotate to left, we will get
* <pre>
* parent
* /
* W
* / \
* cur Y
* / \
* Z X
* </pre>
*
* 2) Suppose {@param cur} is right child of {@param parent}:
* <pre>
* parent
* \
* cur
* / \
* Z W
* / \
* X Y
* </pre>
* After rotate to left, we will get
* <pre>
* parent
* \
* W
* / \
* cur Y
* / \
* Z X
* </pre>
*
* @param cur
* @param parent
* @param isLeftChild
* @return the new root, i.e. the new child of {@param parent} node.
*/
private TreeNode rotateToLeft(TreeNode cur, TreeNode parent, boolean isLeftChild) {
if (isLeftChild) {
parent.left = cur.right;
cur.right = cur.right.left;
parent.left.left = cur;
return parent.left;
} else {
parent.right = cur.right;
cur.right = cur.right.left;
parent.right.left = cur;
return parent.right;
}
}
// return left_subtree_height - right_subtree_height
private int checkBalanced(TreeNode cur) {
if (cur == null) {
return 0;
}
int leftSubtreeHeight = height(cur.left);
int rightSubtreeHeight = height(cur.right);
return leftSubtreeHeight - rightSubtreeHeight;
}
// Return the height of the tree rooted at {@param cur}.
private int height(TreeNode cur) {
if (cur == null) {
return 0;
}
// Now use level order traversal to get the height of the tree.
Queue<TreeNode> tool = new Queue<>();
tool.Push(cur);
int height = 0;
while (!tool.IsEmpty()) {
height++;
int size = tool.Count();
while (size-- > 0) {
TreeNode tmp = tool.Pop();
if (tmp.left != null) {
tool.Push(tmp.left);
}
if (tmp.right != null) {
tool.Push(tmp.right);
}
}
}
return height;
}
}