-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
400 lines (307 loc) · 13.6 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import numpy as np
import os
import sys
import pandas as pd
from PIL import Image
import torch
from torch.utils.data import DataLoader
from torchattacks import FGSM, DeepFool, BIM, RFGSM, PGD, Square, TIFGSM
import torchvision
from torchvision import transforms
from utils.balancedDataset import BalancedDataset
from utils.const import *
from utils.helperFunctions import *
from utils.nonMathAttacks import NonMathAttacks
import warnings
warnings.filterwarnings("ignore")
if not sys.warnoptions:
warnings.simplefilter("ignore")
os.environ["PYTHONWARNINGS"] = "ignore"
# Parameters
NON_MATH_ATTACKS = NonMathAttacks()
SHUFFLE_DATASET = False # Shuffle the dataset
# Parameters for best eps estimation
ALPHA = 0.6
BETA = 1 - ALPHA
# If true, maximize gamma function
# If false, take eps which gives maximum ASR when SSIM is over a threshold
useGamma = False
threshold = 0.4
if not os.path.exists(os.path.join(os.getcwd(), ADVERSARIAL_DIR)):
os.makedirs(os.path.join(os.getcwd(), ADVERSARIAL_DIR))
dfMath = pd.read_csv(MODEL_PREDICTIONS_PATH, index_col=[
"task", "model", "model_dataset", "balance", "dataset"]).sort_index()
# Setting seed for reproducibility
setSeed()
# Helper functions
def evaluateModelsOnDataset(datasetFolder, datasetInfo):
modelsEvals = []
# Get the images and calculate mean and standard deviation
imageDataset = torchvision.datasets.ImageFolder(
datasetFolder, transform=transforms.Compose([transforms.ToTensor()]))
for cls in imageDataset.classes:
cls_index = imageDataset.class_to_idx[cls]
num_cls = np.count_nonzero(
np.array(imageDataset.targets) == cls_index)
print("\t[🧮 # ELEMENTS] {}: {}".format(cls, num_cls))
# Setup for normalization
dataTransform = transforms.Compose([
transforms.Resize(INPUT_SIZE),
transforms.ToTensor(),
transforms.Normalize(NORMALIZATION_PARAMS[0], NORMALIZATION_PARAMS[1])
])
testDataset = BalancedDataset(
datasetFolder, transform=dataTransform, use_cache=False, check_images=False, with_path=True)
setSeed()
testDataLoader = DataLoader(
testDataset, batch_size=64, shuffle=True, num_workers=0, pin_memory=True)
# Evaluate every model
for root, _, fnames in sorted(os.walk(MODELS_DIR, followlinks=True)):
for fname in sorted(fnames):
modelPath = os.path.join(root, fname)
try:
modelData = torch.load(modelPath)
except:
continue
modelDataset = modelData["dataset"]
modelName = modelData["model_name"]
modelPercents = "/".join([str(x)
for x in modelData["balance"]])
print()
print("[🧮 EVALUATING] {} - {} {}".format(
modelDataset,
modelName,
modelPercents
))
modelToTest = modelData["model"]
modelToTest = modelToTest.to(DEVICE, non_blocking=True)
scores = evaluateModel(
modelToTest, testDataLoader, modelDataset, modelData, dfMath)
modelsEvals.append({
"source_dataset": datasetInfo["dataset"],
"isMath": datasetInfo["math"],
"attack": datasetInfo["attack"],
"source_model": datasetInfo["model"],
"source_balancing": datasetInfo["balancing"],
"target_model": modelName,
"target_dataset": modelDataset,
"target_balancing": modelPercents,
"asr": scores["asr"],
"asr_0": scores["asr_0"],
"asr_1": scores["asr_1"]
})
print("\t[ASR]: {:.4f}".format(scores["asr"]))
print("\t\t[ASR_0]: {:.4f}".format(scores["asr_0"]))
print("\t\t[ASR_1]: {:.4f}\n".format(scores["asr_1"]))
torch.cuda.empty_cache()
return modelsEvals
modelsEvals = []
datasetsToGenerate = getSubDirs(DATASETS_DIR)
i = 0
attacks_names = [
'BIM',
'BoxBlur',
'DeepFool',
'FGSM',
'GaussianNoise',
'GreyScale',
'InvertColor',
'PGD',
'RandomBlackBox',
'RFGSM',
'SaltPepper',
'SplitMergeRGB',
'Square',
'TIFGSM'
]
attacks_names_math = [
'BIM',
'DeepFool',
'FGSM',
'PGD',
'RFGSM',
'Square',
'TIFGSM'
]
attack_names_static = [
'GreyScale',
'InvertColor',
'SplitMergeRGB'
]
print("[🧠 GENERATING BEST EPS FOR EACH ATTACK]\n")
best_eps_data = []
for attack_name in attacks_names:
for dataset in sorted(datasetsToGenerate):
print("\n" + "-" * 15)
print("[🗃️ SOURCE DATASET] {}\n".format(dataset))
datasetDir = os.path.join(DATASETS_DIR, dataset)
testDir = os.path.join(datasetDir, "test")
datasetAdvDir = os.path.join(ADVERSARIAL_DIR, dataset)
mathAttacksDir = os.path.join(datasetAdvDir, "math")
nonMathAttacksDir = os.path.join(datasetAdvDir, "nonMath")
if not os.path.exists(mathAttacksDir):
os.makedirs(mathAttacksDir)
if not os.path.exists(nonMathAttacksDir):
os.makedirs(nonMathAttacksDir)
toTensor = transforms.Compose([transforms.ToTensor()])
toNormalizedTensor = transforms.Compose([
transforms.Resize(INPUT_SIZE),
transforms.ToTensor(),
transforms.Normalize(NORMALIZATION_PARAMS[0], NORMALIZATION_PARAMS[1])
])
for root, _, fnames in sorted(os.walk(os.path.join(MODELS_DIR, dataset), followlinks=True)):
for fname in sorted(fnames):
effective = False
asr_history = []
path = os.path.join(root, fname)
modelData = torch.load(path, map_location=torch.device('cpu'))
modelDataset = modelData["dataset"]
modelName = modelData["model_name"]
torch.cuda.empty_cache()
modelPercents = "_".join([str(x)
for x in modelData["balance"]])
model = modelData["model"].to(DEVICE)
# Test dataset without normalization (for generating samples)
originalTestDataset = BalancedDataset(
testDir, transform=toTensor, datasetSize=DATASET_SIZE, use_cache=False, check_images=False, with_path=True)
setSeed()
originalTestDataLoader = DataLoader(
originalTestDataset, batch_size=16, num_workers=0, shuffle=SHUFFLE_DATASET)
# Test dataset with normalization (for evaluation)
testDataset = BalancedDataset(
testDir, transform=toNormalizedTensor, datasetSize=DATASET_SIZE, use_cache=False, check_images=False, with_path=True)
setSeed()
testDataLoader = DataLoader(
testDataset, batch_size=16, num_workers=0, shuffle=SHUFFLE_DATASET)
# Loading best epsilon value for this model
best_df = pd.read_csv(os.path.join(
HISTORY_DIR, attack_name + '.csv'), index_col='Unnamed: 0')
df_atk = best_df[best_df['model'] == modelName]
df_atk = df_atk[df_atk['dataset'] == modelDataset]
df_atk = df_atk[df_atk['balance'] == modelPercents]
epss = list(df_atk['eps'])
asrs = list(df_atk['asr'])
ssims = list(df_atk['ssim'])
best = []
max_eps_idx = 0
for j in range(len(epss)):
if useGamma:
best.append((ALPHA * asrs[j]) + (BETA * ssims[j]))
else:
if ssims[j] > threshold and asrs[j] >= asrs[max_eps_idx]:
eps = epss[j]
max_eps_idx = j
if useGamma:
maxx = max(best)
best_index = best.index(maxx)
eps = epss[best_index]
attacks = {
"BIM": BIM(model, eps=eps),
"BoxBlur": NON_MATH_ATTACKS.boxBlur,
"FGSM": FGSM(model, eps=eps),
"GaussianNoise": NON_MATH_ATTACKS.gaussianNoise,
"GreyScale": NON_MATH_ATTACKS.greyscale,
"InvertColor": NON_MATH_ATTACKS.invertColor,
"DeepFool": DeepFool(model, overshoot=eps),
"PGD": PGD(model, eps=eps),
"RandomBlackBox": NON_MATH_ATTACKS.randomBlackBox,
"RFGSM": RFGSM(model, eps=eps),
"SaltPepper": NON_MATH_ATTACKS.saltAndPepper,
"SplitMergeRGB": NON_MATH_ATTACKS.splitMergeRGB,
"Square": Square(model, eps=eps),
"TIFGSM": TIFGSM(model, eps=eps)
}
for attack in attacks:
if attack == attack_name:
# Mathematical attacks
if attack in attacks_names_math:
attacker = attacks[attack]
attackDir = os.path.join(
mathAttacksDir, attack)
saveDir = os.path.join(
attackDir, modelName + "/" + modelPercents)
if not os.path.exists(saveDir):
os.makedirs(saveDir)
print("\n[⚔️ ADVERSARIAL] {} @ {} - {} - {} {}".format(
attack,
eps,
modelDataset,
modelName,
modelPercents
))
setSeed()
saveMathAdversarials(
originalTestDataLoader, originalTestDataset.classes, attacker, saveDir)
# Non mathematical attacks of which a parameter have been grid-searched
elif attack not in attack_names_static:
print("[⚔️ ADVERSARIAL] {} @ {} - {} - {} {}".format(
attack,
eps,
modelDataset,
modelName,
modelPercents
))
for path, cls in sorted(testDataset.imgs):
clsName = testDataset.classes[cls]
imageName = os.path.basename(path)
image = Image.open(path).convert("RGB")
attacker = attacks[attack]
attackDir = os.path.join(
nonMathAttacksDir, attack)
saveDir = os.path.join(attackDir, modelName)
saveDir2 = os.path.join(saveDir, modelPercents)
saveDir = os.path.join(saveDir2, clsName)
if not os.path.exists(saveDir):
os.makedirs(saveDir)
outImage = image.copy()
outImage = attacker(outImage, amount=eps)
outImage.save(os.path.join(
saveDir, imageName), "JPEG")
print(f"\t[💾 IMAGES SAVED]")
best_eps_data.append({
'attack': attack_name,
'model': modelName,
'dataset': modelDataset,
'balance': modelPercents,
'best_eps': eps
})
eps_df = pd.DataFrame(best_eps_data)
eps_df.to_csv(os.path.join(HISTORY_DIR, 'all_eps.csv'))
print("\n\n[🧠 ATTACKS EVALUATION]\n")
modelsEvals = []
for attack in sorted(attacks_names):
modelsEvals = []
# Evaluate models on math attacks folders
for dataset in sorted(getSubDirs(ADVERSARIAL_DIR)):
datasetDir = os.path.join(ADVERSARIAL_DIR, dataset)
mathAdvDir = os.path.join(datasetDir, "math")
nonMathAdvDir = os.path.join(datasetDir, "nonMath")
if not os.path.exists(mathAdvDir):
continue
if attack in attacks_names_math:
attackDir = os.path.join(mathAdvDir, attack)
isMath = True
else:
attackDir = os.path.join(nonMathAdvDir, attack)
isMath = False
for advModel in sorted(getSubDirs(attackDir)):
advModelDir = os.path.join(attackDir, advModel)
for advBalancing in sorted(getSubDirs(advModelDir)):
advDatasetDir = os.path.join(advModelDir, advBalancing)
print("\n" + "-" * 15)
print("[🗃️ ADVERSARIAL DATASET] {}/{}/{}/{}".format(dataset,
attack, advModel, advBalancing))
advDatasetInfo = {
"dataset": dataset,
"math": isMath,
"attack": attack,
"balancing": advBalancing.replace("_", "/"),
"model": advModel,
}
evals = evaluateModelsOnDataset(advDatasetDir, advDatasetInfo)
modelsEvals.extend(evals)
modelsEvalsDF = pd.DataFrame(modelsEvals)
if not os.path.exists(EVALUATIONS_DIR):
os.makedirs(EVALUATIONS_DIR)
modelsEvalsDF.to_csv(os.path.join(
EVALUATIONS_DIR, 'evaluations_' + attack + '.csv'))