-
Notifications
You must be signed in to change notification settings - Fork 0
/
raytrace3.cpp~
896 lines (717 loc) · 27.8 KB
/
raytrace3.cpp~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <cfloat>
#include <iostream>
#include <sstream>
#include <boost/thread.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <fstream>
#include <vector>
boost::mutex buffer_mutex;
using namespace std;
// Generate a random number between 0 and 1
// return a uniform number in [0,1].
double unifRand()
{
return rand() / double(RAND_MAX);
}
// Generate a random number in a real interval.
// param a one end point of the interval
// param b the other end of the interval
// return a inform rand number in [a,b].
double unifRand(double a, double b)
{
return (b-a)*unifRand() + a;
}
// Generate a random integer between 1 and a given value.
// param n the largest value
// return a uniform random value in [1,...,n]
long unifRand(long n)
{
if (n < 0) n = -n;
if (n==0) return 0;
/* There is a slight error in that this code can produce a return value of n+1
**
** return long(unifRand()*n) + 1;
*/
//Fixed code
long guard = (long) (unifRand() * n) +1;
return (guard > n)? n : guard;
}
class V3 {
public:
double x, y, z;
V3(void) {
x = 0.0L;
y = 0.0L;
z = 0.0L;
}
V3(double ix, double iy, double iz) {
x = ix;
y = iy;
z = iz;
}
V3 add(V3 v) {
return V3(x + v.x, y + v.y, z + v.z);
}
V3 iadd(V3 v) {
x += v.x;
y += v.y;
z += v.z;
return *this;
}
V3 sub(V3 v) {
return V3(x - v.x, y - v.y, z - v.z);
}
V3 isub(V3 v) {
x -= v.x;
y -= v.y;
z -= v.z;
return *this;
}
V3 mul(V3 v) {
return V3(x * v.x, y * v.y, z * v.z);
}
V3 div(V3 v) {
return V3(x / v.x, y / v.y, z / v.z);
}
V3 muls(double s) {
return V3(x * s, y * s, z * s);
}
V3 divs(double s) {
return muls(1.0L / s);
}
double dot(V3 v) {
return x * v.x + y * v.y + z * v.z;
}
V3 cross(V3 v) {
return V3(
(y * v.z) - (z * v.y),
(z * v.x) - (x * v.z),
(x * v.y) - (y * v.x));
}
V3 normalize(void) {
return divs(sqrt(dot(*this)));
}
};
V3 getRandomNormalInHemisphere(V3 v) {
V3 v2(0.0L, 0.0L, 0.0L);
do {
v2 = V3(unifRand()*2.0L-1.0L, unifRand()*2.0L-1.0L, unifRand()*2.0L-1.0L);
} while (v2.dot(v2) > 1.0L);
v2.normalize();
if (v2.dot(v) < 0.0L) {
return v2.muls(-1.0L);
}
return v2;
}
std::ostream& operator<<(std::ostream &strm, const V3 &v) {
return strm << "V3(" << v.x << ", " << v.y << ", " << v.z << ")";
}
class Ray {
public:
V3 origin;
V3 direction;
Ray(V3 iorigin, V3 idirection) {
origin = iorigin;
direction = idirection;
}
};
class Camera {
public:
V3 origin;
V3 topleft;
V3 topright;
V3 bottomleft;
V3 xd;
V3 yd;
Camera(void) {
}
Camera(V3 iorigin, V3 itopleft, V3 itopright, V3 ibottomleft) {
origin = iorigin;
topleft = itopleft;
topright = itopright;
bottomleft = ibottomleft;
xd = topright.sub(topleft);
yd = bottomleft.sub(topleft);
}
Ray getRay(double x, double y) {
V3 p = topleft.add(xd.muls(x)).add(yd.muls(y));
return Ray(origin, p.sub(origin).normalize());
}
};
class Shape {
public:
virtual double intersect(Ray) {
// cout << "Shape.intersect()" << endl;
}
virtual V3 getNormal(V3) {}
virtual V3 getPointOnSurface(void) {}
};
class Plane : public Shape {
public:
V3 center;
V3 normal;
Plane(V3 icenter, V3 inormal) {
center = icenter;
normal = inormal.normalize();
}
double intersect(Ray r) {
double n_dot_u = normal.dot(r.direction);
if ((n_dot_u > -0.00001L) && (n_dot_u < 0.00001L)) {
return -1.0L;
}
double n_dot_p0 = normal.dot(center.sub(r.origin));
return n_dot_p0 / n_dot_u;
}
V3 getNormal(V3 point) {
return normal;
}
V3 getPointOnSurface(void) {
// HACK Only supports planes with normals on the Z axis.
// HACK Currently limits to -10 to 10 on X and Y axes.
// TODO
return V3(unifRand(-10.0L, 10.0L), unifRand(-10.0L, 10.0L), this->center.z);
}
};
class Rectangle : public Shape {
V3 p1, p2, p3, p4;
V3 normal;
// Collision detection from http://answers.google.com/answers/threadview?id=18979
V3 v1, v3;
V3 minimums, maximums;
public:
Rectangle(V3 p1, V3 p2, V3 p3, V3 p4) {
this->p1 = p1;
this->p2 = p2;
this->p3 = p3;
this->p4 = p4;
this->normal = p3.sub(p1).cross(p2.sub(p1));
this->v1 = p2.sub(p1).normalize();
this->v3 = p4.sub(p3).normalize();
this->minimums = V3(
min(min(this->p1.x, this->p2.x), min(this->p3.x, this->p4.x)),
min(min(this->p1.y, this->p2.y), min(this->p3.y, this->p4.y)),
min(min(this->p1.z, this->p2.z), min(this->p3.z, this->p4.z)));
this->maximums = V3(
max(max(this->p1.x, this->p2.x), max(this->p3.x, this->p4.x)),
max(max(this->p1.y, this->p2.y), max(this->p3.y, this->p4.y)),
max(max(this->p1.z, this->p2.z), max(this->p3.z, this->p4.z)));
}
V3 getNormal(V3 point) {
return this->normal;
}
double intersect(Ray r) {
double n_dot_u = normal.dot(r.direction);
if ((n_dot_u > -0.00001L) && (n_dot_u < 0.00001L)) {
return -1.0L;
}
double n_dot_p0 = normal.dot(p1.sub(r.origin));
double t = n_dot_p0 / n_dot_u;
// Intersection before origin of ray.
if (t < 1.0L) {
return -1.0L;
}
V3 hit = r.origin.add(r.direction.muls(t));
V3 v4 = hit.sub(p1).normalize();
V3 v5 = hit.sub(p3).normalize();
if ((v1.dot(v4) > 0.0L) && (v3.dot(v5) > 0.0L)) {
return t;
} else {
return -1.0L;
}
}
V3 getPointOnSurface(void) {
// HACK Hard-coded.
V3 point = V3(
unifRand(this->minimums.x, this->maximums.x),
unifRand(this->minimums.y, this->maximums.y),
unifRand(this->minimums.z, this->maximums.z));
// cout << "rectangle rand: " << point << endl;
}
// V3 getPointOnSurface(void) {
// // HACK Likely biased towards center of rectangle.
// return p2.sub(p1).muls(unifRand(0.0L, 1.0L)).iadd(
// p4.sub(p1).muls(unifRand(0.0L, 1.0L)));
// }
};
class Sphere : public Shape {
public:
V3 center;
double radius;
double radius2;
Sphere(V3 icenter, double iradius) {
center = icenter;
radius = iradius;
radius2 = radius * radius;
}
double intersect(Ray r) {
// cout << "Sphere intersect()" << endl;
V3 distance = r.origin.sub(center);
double b = distance.dot(r.direction);
double c = distance.dot(distance) - radius2;
double d = (b * b) - c;
if (d > 0.0L) {
return -b - sqrt(d);
} else {
return -1.0L;
}
}
V3 getNormal(V3 point) {
return point.sub(center).normalize();
}
V3 getPointOnSurface(void) {
// HACK Is this biased?
// Find random point within a cube with sides 2*radius then fit to radius.
// TODO HACK Forcing this to be a negative Z to point into scene for lighting for now.
V3 point = V3(
unifRand(-this->radius, this->radius),
unifRand(-this->radius, this->radius),
unifRand(-this->radius, 0.0L));
V3 normal = point.normalize();
normal.muls(this->radius);
return normal.iadd(this->center);
}
};
class Material {
public:
V3 color;
V3 emission;
Material(void) {
color = V3(0.0L, 0.0L, 0.0L);
emission = V3(0.0L, 0.0L, 0.0L);
};
Material(V3 icolor, V3 iemission) {
color = icolor;
emission = iemission;
}
Material(V3 icolor) {
color = icolor;
emission = V3(0.0L, 0.0L, 0.0L);
}
virtual V3 bounce(Ray ray, V3 inormal) {
// cout << "material bounce\n";
return getRandomNormalInHemisphere(inormal);
}
};
class Chrome : public Material {
public:
Chrome(V3 icolor) : Material(icolor) {}
V3 bounce(Ray ray, V3 inormal) {
// cout << "glass bounce\n";
double theta1 = fabs(ray.direction.dot(inormal));
return ray.direction.add(inormal.muls(theta1 * 2.0L));
}
};
class Glass : public Material {
public:
double ior;
double reflection;
Glass(V3 icolor, double iior, double ireflection) : Material(icolor) {
ior = iior;
reflection = ireflection;
}
V3 bounce(Ray ray, V3 normal) {
// cout << "chrome bounce\n";
double theta1 = fabs(ray.direction.dot(normal));
double internalIndex, externalIndex;
if (theta1 >= 0.0L) {
internalIndex = ior;
externalIndex = 1.0L;
} else {
internalIndex = 1.0L;
externalIndex = ior;
}
double eta = externalIndex/internalIndex;
double theta2 = sqrt(1.0L - (eta * eta) * (1.0L - (theta1 * theta1)));
double rs = (externalIndex * theta1 - internalIndex * theta2) / (externalIndex*theta1 + internalIndex * theta2);
double rp = (internalIndex * theta1 - externalIndex * theta2) / (internalIndex*theta1 + externalIndex * theta2);
double reflectance = (rs*rs + rp*rp);
//reflection
if(unifRand() < reflectance+reflection) {
return ray.direction.add(normal.muls(theta1*2.0L));
}
// refraction
return (ray.direction.add(normal.muls(theta1)).muls(eta) \
.add(normal.muls(-theta2)));
}
};
class Body {
public:
Shape* shape;
Material* material;
Body(Shape* ishape, Material* imaterial) {
shape = ishape;
material = imaterial;
}
};
struct Scene {
int width;
int height;
Camera camera;
vector<Body*> objects;
int body_count;
};
struct HitRecord {
V3 hit;
Body* body;
V3 color;
HitRecord(V3 hit, Body* body, V3 color) {
this->hit = hit;
this->body = body;
this->color = color;
}
};
class Renderer {
public:
Scene scene;
V3* buffer;
int pixels;
vector<Body*> lights;
Renderer(Scene iscene) {
scene = iscene;
pixels = scene.width * scene.height;
buffer = new V3[pixels];
for (int i = 0; i < pixels; i++) {
buffer[i] = V3(0.0L, 0.0L, 0.0L);
}
// Find all lights in scene.
for (vector<Body*>::iterator it = this->scene.objects.begin(); it < this->scene.objects.end(); it++) {
if (((*it)->material->emission.x > 1.0L) || ((*it)->material->emission.y > 1.0L) || ((*it)->material->emission.z > 1.0L)) {
this->lights.push_back(*it);
}
}
}
~Renderer(void) {
delete[] buffer;
}
void iterate() {
int i = 0;
// cout << "Entered iterate()\n";
vector<HitRecord> gather_records;
vector<HitRecord> shoot_records;
for (double y = unifRand() / (double)scene.height, ystep = 1.0L / (double)scene.height;
y < 0.99999L;
y += ystep) {
for (double x = unifRand() / (double)scene.width, xstep = 1.0L / (double)scene.width;
x < 0.99999L;
x += xstep) {
gather_records.clear();
// cout << "Iterate! " << x << ", " << y << endl;
Ray gather_ray = scene.camera.getRay(x, y);
V3 gather_color = trace(gather_ray, 0, &gather_records);
// cout << "Iterations: " << gather_records.size() << endl;
// cout << color.x << ", " << color.y << ", " << color.z << endl;
shoot_records.clear();
// TODO Only using a single spherical light.
// Body* light = this->lights[unifRand(0, this->lights.size() - 1)];
Body* light = this->lights[unifRand(0, this->lights.size() - 1)];
V3 shoot_origin;
do {
shoot_origin = light->shape->getPointOnSurface();
Ray shoot_ray = Ray(shoot_origin, light->shape->getNormal(shoot_origin).normalize());
// cout << shoot_ray.origin.x << ", " << shoot_ray.origin.y << ", " << shoot_ray.origin.z << " -> " <<
// shoot_ray.direction.x << ", " << shoot_ray.direction.y << ", " << shoot_ray.direction.z << endl;
V3 shoot_color = trace(shoot_ray, 0, &shoot_records);
} while (shoot_records.size() == 0);
// Add the light source itself as a shoot hit.
// shoot_records.push_back(
// HitRecord(
// shoot_origin, light, light->material->emission.add(light->material->color)));
V3 final_color;
V3 indirect_color;
V3 direct_color;
// cout << "Gather hits: " << gather_records.size() << ", shoot hits: " << shoot_records.size() << endl;
double samples = 0;
for (vector<HitRecord>::iterator gather_it = gather_records.begin(); gather_it < gather_records.end(); gather_it++) {
int shoot_i = shoot_records.size() - 1;
V3 light_flux = light->material->emission;
for (vector<HitRecord>::iterator shoot_it = shoot_records.end(); shoot_it >= shoot_records.begin(); shoot_it--, shoot_i--) {
// TODO Haven't accounted for visiblity of shoot hit from gather hit.
// if (shoot_i < shoot_records.size() - 1) {
if (true) {
// HitRecord prev_shoot = shoot_records[shoot_i + 1];
// if (false) {
// // // Previous shoot hit was not the shoot origin.
// // // TODO Very uncertain whether using bounce() as the BRDF is reasonable.
// V3 light_brdf = shoot_it->body->material->bounce(
// Ray(prev_shoot.hit, shoot_it->hit.sub(prev_shoot.hit).normalize()),
// gather_it->hit.sub(shoot_it->hit).normalize());
// double light_flux = fabs(light_brdf.dot(gather_it->body->shape->getNormal(gather_it->hit)));
// // cout << "Old final: " << final_color << endl;
// final_color = final_color.mul(gather_it->body->material->color);
// // cout << "Final with gather hit: " << final_color << endl;
// final_color.iadd(gather_it->body->material->emission);
// // cout << "Final with gather emission: " << final_color << endl;
// final_color.iadd(shoot_it->color.muls(light_flux));
// // cout << "Final with shoot color: " << final_color << endl;
// samples++;
// } else {
if (checkHit(shoot_it->hit, gather_it->hit, gather_it->body, shoot_it->body)) {
// TODO First check these.
// indirect_color.iadd(shoot_it->body->material->emission);
// indirect_color.iadd(shoot_it->color);
indirect_color.iadd(shoot_it->color.muls(1.0L / (double)shoot_records.size()));
samples++;
}
// }
}
// if (checkHit(shoot_origin, gather_it->hit, light)) {
// direct_color = light->material->emission;
// }
}
// final_color = gather_it->body->material->color.mul(indirect_color);
// final_color = gather_it->body->material->color.mul(indirect_color.iadd(direct_color));
// cout << "Samples: " << samples << endl;
final_color.iadd(gather_it->body->material->color.mul(indirect_color.iadd(direct_color)).iadd(gather_it->body->material->emission));
}
// buffer[i++].iadd(gather_color);
buffer[i++].iadd(final_color.divs(samples));
// buffer[i++].iadd(final_color);
}
}
}
bool checkHit(V3 origin, V3 target, Body* expected, Body* unexpected) {
// Returns true if a ray from origin to target hits nothing in
// between except the expected Body.
Body* hit = NULL;
double mint = DBL_MAX;
Ray ray = Ray(origin, target.sub(origin));
for (vector<Body*>::iterator it = scene.objects.begin(); it < scene.objects.end(); it++) {
double t = (*it)->shape->intersect(ray);
if ((t > 0.0000001L) && (t <= mint)) {
mint = t;
hit = *it;
}
}
// if (hit == unexpected) {
// cout << "checkHit: unexpected\n";
// } else if (hit == expected) {
// cout << "checkHit: expected\n";
// } else {
// cout << "checkHit: Normal\n";
// }
return hit == expected;
}
V3 trace(Ray ray, int n, vector<HitRecord>* records) {
if (n > 1) {
return V3();
}
Body* hit = NULL;
double mint = DBL_MAX;
// cout << "Body count: " << scene.body_count << endl;
for (vector<Body*>::iterator it = scene.objects.begin(); it < scene.objects.end(); it++) {
// cout << candidate->shape->intersect(ray) << endl;
double t = (*it)->shape->intersect(ray);
if ((t > 0.0000001L) && (t <= mint)) {
mint = t;
hit = *it;
}
}
if (hit == NULL) {
return V3();
}
// V3 ra = hit->shape->getPointOnSurface();
// cout << "hit, random point: " << ra.x << ", " << ra.y << ", " << ra.z << endl;
V3 point = ray.origin.add(ray.direction.muls(mint));
V3 normal = hit->shape->getNormal(point);
V3 direction = hit->material->bounce(ray, normal);
if (direction.dot(ray.direction) > 0.0f) {
// if the ray is refractedmove the intersection point a bit in
point = ray.origin.add(ray.direction.muls(mint*1.0000001L));
} else {
// otherwise move it out to prevent problems with floating point
// accuracy
point = ray.origin.add(ray.direction.muls(mint*0.9999999L));
}
Ray newray = Ray(point, direction);
V3 color, direct_color;
bool direct_light = false;
bool single_random_light = true;
if (direct_light) {
if (single_random_light) {
Body* light = this->lights[unifRand(0, this->lights.size() - 1)];
V3 light_point = light->shape->getPointOnSurface();
// TODO Undone for checkHit tests.
// if (checkHit(light_point, point, hit)) {
// // TODO Should this be scaled by the BRDF?
// // HACK Magic divisor
// direct_color.iadd(light->material->emission.divs(4.0L));
// }
} else {
for (vector<Body*>::iterator light_it = this->lights.begin(); light_it < this->lights.end(); light_it++) {
V3 light_point = (*light_it)->shape->getPointOnSurface();
// TODO Undone for checkHit tests.
// if (checkHit(light_point, point, hit)) {
// // TODO Should this be scaled by the BRDF?
// // HACK Magic divisor
// direct_color.iadd((*light_it)->material->emission.divs(12.0L));
// }
}
}
}
// cout << "direct: " << direct_color << endl;
// color = trace(newray, n+1, records).mul(hit->material->color).mul(direct_color).add(hit->material->emission);
// color = hit->material->color.mul(trace(newray, n+1, records).add(direct_color).add(hit->material->emission));
// color = hit->material->color.mul(trace(newray, n+1, records).add(direct_color).add(hit->material->emission));
color = hit->material->color.mul(trace(newray, n+1, records).add(direct_color)).add(hit->material->emission);
// if ((hit->material->emission.x < 1.0L) && (hit->material->emission.y < 1.0L) && (hit->material->emission.z < 1.0L)) {
// color = trace(newray, n+1, records).mul(hit->material->color).mul(direct_color).add(hit->material->emission);
// } else {
// color = hit->material->color.mul(direct_color).add(hit->material->emission);
// }
records->push_back(HitRecord(point, hit, color));
return color;
}
};
void save(V3* buffer, int samples, int width, int height) {
ofstream myfile;
stringstream filename;
filename << "output_" << samples << ".ppm";
cout << "saving to file \"" << filename.str() << "\"" << endl;
// myfile.open("output" + samples + ".ppm");
myfile.open(filename.str());
myfile << "P3\n" << width << " " << height << endl << "255\n";
V3* pixel = buffer;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int r = (255.0L * pixel->x) / (double)samples;
int g = (255.0L * pixel->y) / (double)samples;
int b = (255.0L * pixel->z) / (double)samples;
if (r > 255) { r = 255; }
if (g > 255) { g = 255; }
if (b > 255) { b = 255; }
myfile << r << " " << g << " " << b << endl;
pixel++;
}
}
myfile.close();
}
void worker(int worker_num, int iterations, Scene* scene, V3* buffer) {
Renderer renderer = Renderer(*scene);
for (int i = 0; i < iterations; i++) {
cout << "Worker " << worker_num << " iteration " << i << endl;
renderer.iterate();
}
boost::mutex::scoped_lock lock(buffer_mutex);
V3* src_pixel = renderer.buffer;
V3* dst_pixel = buffer;
for (int y = 0; y < scene->height; y++) {
for (int x = 0; x < scene->width; x++) {
dst_pixel->x += src_pixel->x;
dst_pixel->y += src_pixel->y;
dst_pixel->z += src_pixel->z;
src_pixel++;
dst_pixel++;
}
}
}
int main(int argc, const char* argv[]) {
srand(time(NULL));
if (argc < 5) {
cout << argv[0] << " <width> <height> <iterations> <thread count>\n";
return 0;
}
int width = strtol(argv[1], NULL, 10);
int height = strtol(argv[2], NULL, 10);
int iterations = strtol(argv[3], NULL, 10);
int thread_count = strtol(argv[4], NULL, 10);
Scene scene;
scene.width = width;
scene.height = height;
scene.camera = Camera(
V3(0.0L, -0.5L, 0.0L),
V3(-1.3L, 1.0L, 1.0L),
V3(1.3L, 1.0L, 1.0L),
V3(-1.3L, 1.0L, -1.0L)
);
vector<Body*> bodies;
// Sphere glass_sphere = Sphere(V3(1.0L, 2.0L, 0.0L), 0.5L);
// Glass glass_mat = Glass(V3(1.00L, 1.00L, 1.00L), 1.5L, 0.1L);
// Body glass = Body(&glass_sphere, &glass_mat);
// bodies.push_back(&glass);
// Sphere chrome_sphere = Sphere(V3(-1.1L, 2.8L, 0.0L), 0.5L);
// Chrome chrome_mat = Chrome(V3(0.8L, 0.8L, 0.8L));
// Body chrome = Body(&chrome_sphere, &chrome_mat);
// bodies.push_back(&chrome);
Material floor_mat = Material(V3(0.9L, 0.9L, 0.9L));
Rectangle floor_rectangle = Rectangle(V3(-1.9L, 4.5L, -0.5L), V3(1.9L, 4.5L, -0.5L), V3(1.9L, -2.5L, -0.5L), V3(-1.9L, -2.5L, -0.5L));
Body floor = Body(&floor_rectangle, &floor_mat);
bodies.push_back(&floor);
Material back_mat = Material(V3(0.9L, 0.9L, 0.9L));
Rectangle back_rectangle = Rectangle(V3(-1.9L, 4.5L, 2.5L), V3(1.9L, 4.5L, 2.5L), V3(1.9L, 4.5L, -0.5L), V3(-1.9L, 4.5L, -0.5L));
Body back = Body(&back_rectangle, &back_mat);
bodies.push_back(&back);
Material left_mat = Material(V3(0.9L, 0.5L, 0.5L));
Rectangle left_rectangle = Rectangle(V3(-1.9L, -2.5L, 2.5L), V3(-1.9L, 4.5L, 2.5L), V3(-1.9L, 4.5L, -0.5L), V3(-1.9L, -2.5L, 2.5L));
Body left = Body(&left_rectangle, &left_mat);
bodies.push_back(&left);
Material right_mat = Material(V3(0.5L, 0.5L, 0.9L));
Rectangle right_rectangle = Rectangle(V3(1.9L, 4.5L, 2.5L), V3(1.9L, -2.5L, 2.5L), V3(1.9L, -2.5L, -0.5L), V3(1.9L, 4.5L, -0.5L));
Body right = Body(&right_rectangle, &right_mat);
bodies.push_back(&right);
Material top_mat = Material(V3(0.9L, 0.9L, 0.9L));
Rectangle top_rectangle = Rectangle(V3(1.9L, 4.5L, 2.5L), V3(-1.9L, 4.5L, 2.5L), V3(-1.9L, -2.5L, 2.5L), V3(1.9L, -2.5L, 2.5L));
Body top = Body(&top_rectangle, &top_mat);
bodies.push_back(&top);
Material front_mat = Material(V3(0.9L, 0.9L, 0.9L));
Rectangle front_rectangle = Rectangle(V3(1.9L, 4.5L, 2.5L), V3(-1.9L, 4.5L, 2.5L), V3(-1.9L, 4.5L, -0.5L), V3(1.9L, 4.5L, -0.5L));
Body front = Body(&front_rectangle, &front_mat);
bodies.push_back(&front);
// Material light_mat = Material(V3(1.0L, 0.935L, 0.845L), V3(2.0L, 1.87L, 1.69L));
Material light_mat = Material(V3(0.2L, 0.187L, 0.169L), V3(2.0L, 1.87L, 1.69L));
Sphere back_light_sphere = Sphere(V3(-0.63333L, 4.5L, 2.1L), 0.1L);
// Material back_light_mat = Material(V3(0.0L, 0.0L, 0.0L), V3(2.0L, 1.87L, 1.69L));
Body back_light = Body(&back_light_sphere, &light_mat);
bodies.push_back(&back_light);
// Sphere back2_light_sphere = Sphere(V3(0.63333L, 4.5L, 2.1L), 0.1L);
// //Material back2_light_mat = Material(V3(0.0L, 0.0L, 0.0L), V3(2.0L, 1.87L, 1.69L));
// Body back2_light = Body(&back2_light_sphere, &light_mat);
// bodies.push_back(&back2_light);
// Rectangle top_light_box = Rectangle(V3(1.4L, 3.5L, 2.5L), V3(-1.4L, 3.5L, 2.5L), V3(-1.4L, -2.5L, 2.5L), V3(1.4L, -2.5L, 2.5L));
// //Material top_light_mat = Material(V3(0.0L, 0.0L, 0.0L), V3(2.0L, 1.87L, 1.69L));
// Body top_light = Body(&top_light_box, &light_mat);
// bodies.push_back(&top_light);
scene.objects = bodies;
V3* buffer = new V3[width * height];
for (int i = 0; i < (width * height); i++) {
buffer[i] = V3(0.0L, 0.0L, 0.0L);
}
// int iterations_remaining = iterations;
// boost::thread** threads = NULL;
// while (iterations_remaining > 0) {
// int iteration_step = min(10, max((int)((double)iterations_remaining / (double)thread_count), 1));
// cout << "Iterations between output: " << iteration_step << endl;
// threads = new boost::thread*[thread_count];
// for (int i = 0; i < thread_count; i++) {
// threads[i] = new boost::thread(boost::bind(&worker, i, iteration_step, &scene, buffer));
// iterations_remaining -= iteration_step;
// }
// for (int i = 0; i < thread_count; i++) {
// threads[i]->join();
// }
// for (int i = 0; i < thread_count; i++) {
// delete threads[i];
// }
// save(buffer, iterations - iterations_remaining, width, height);
// }
// delete threads;
// save(buffer, iterations, width, height);
boost::thread** threads = new boost::thread*[thread_count];
for (int i = 0; i < thread_count; i++) {
threads[i] = new boost::thread(boost::bind(&worker, i, (double)iterations / (double)thread_count, &scene, buffer));
}
for (int i = 0; i < thread_count; i++) {
threads[i]->join();
}
for (int i = 0; i < thread_count; i++) {
delete threads[i];
}
delete threads;
save(buffer, iterations, width, height);
delete[] buffer;
}