README > Functionality
The following table summarizes device-level GEMM kernels in CUTLASS, organized by opcode class, data type, and layout. Hyperlinks to relevant unit tests demonstrate how specific template instances may be defined.
Opcode Class | Compute Capability | CUDA Toolkit | Data Type | Layouts | Unit Test |
---|---|---|---|---|---|
Simt | 50,60,61,70,75 | 9.2+ | f32 * f32 + f32 => f32 |
{N,T} x {N,T} => {N,T} | example |
Simt | 50,60,61,70,75 | 9.2+ | f64 * f64 + f64 => f64 |
{N,T} x {N,T} => {N,T} | example |
Simt | 60,61,70,75 | 9.2+ | f16 * f16 + f16 => f16 |
{N,T} x {N,T} => {N,T} | example |
Simt | 61,70,75 | 9.2+ | s8 * s8 + s32 => {s32,s8} |
{N,T} x {N,T} => {N,T} | example |
WmmaTensorOp | 70 | 9.2+ | f16 * f16 + f16 => f16 |
{N,T} x {N,T} => {N,T} | example |
WmmaTensorOp | 70 | 9.2+ | f16 * f16 + f32 => {f16, f32} |
{N,T} x {N,T} => {N,T} | example |
WmmaTensorOp | 75 | 10.0+ | s8 * s8 + s32 => {s32, s8} |
{N,T} x {N,T} => {N,T} | example |
WmmaTensorOp | 75 | 10.0+ | s4 * s4 + s32 => {s32, s4} |
{N,T} x {N,T} => {N,T} | example |
WmmaTensorOp | 75 | 10.0+ | b1 ^ b1 + s32 => {s32, b1} |
{ T } x { N } => {N,T} | example |
TensorOp | 70 | 10.1+ | f16 * f16 + f16 => f16 |
{N,T} x {N,T} => {N,T} | example |
TensorOp | 70 | 10.1+ | f16 * f16 + f32 => {f16, f32} |
{N,T} x {N,T} => {N,T} | example |
TensorOp | 75 | 10.2+ | f16 * f16 + f16 => f16 |
{N,T} x {N,T} => {N,T} | example |
TensorOp | 75 | 10.2+ | f16 * f16 + f32 => {f16, f32} |
{N,T} x {N,T} => {N,T} | example |
TensorOp | 75 | 10.2+ | s8 * s8 + s32 => {s32, s8} |
{ T } x { N } => {N,T} | example |
TensorOp | 75 | 10.2+ | s4 * s4 + s32 => {s32, s4} |
{ T } x { N } => {N,T} | example |
TensorOp | 75 | 10.2+ | b1 ^ b1 + s32 => {s32, b1} |
{ T } x { N } => {N,T} | example |
TensorOp | 80 | 11.0+ | f16 * f16 + f16 => f16 |
{N,T} x {N,T} => {N,T} | example |
TensorOp | 80 | 11.0+ | f16 * f16 + f32 => {f16, f32} |
{N,T} x {N,T} => {N,T} | example |
TensorOp | 80 | 11.0+ | bf16 * bf16 + f32 => {bf16, f32} |
{N,T} x {N,T} => {N,T} | example |
TensorOp | 80 | 11.0+ | tf32 * tf32 + f32 => f32 |
{N,T} x {N,T} => {N,T} | example |
TensorOp | 80 | 11.0+ | s8 * s8 + s32 => {s32, s8} |
{ T } x { N } => {N,T} | example |
TensorOp | 80 | 11.0+ | s4 * s4 + s32 => {s32, s4} |
{ T } x { N } => {N,T} | example |
TensorOp | 80 | 11.0+ | b1 ^ b1 + s32 => {s32, b1} |
{ T } x { N } => {N,T} | example |
TensorOp | 80 | 11.0+ | f64 * f64 + f64 => f64 |
{N,T} x {N,T} => {N,T} | example |
TensorOp | 80 | 11.0+ | cf32 * cf32 + cf32 => cf32 |
{N,T} x {N,T} => {N,T} | example |
TensorOp | 80 | 11.0+ | cf64 * cf64 + cf64 => cf64 |
{N,T} x {N,T} => {N,T} | example, Gaussian 3m |
SpTensorOp | 80 | 11.1+ | f16 * f16 + f32 => {f16, f32} |
{N,T} x {N,T} => {N,T} | example |
SpTensorOp | 80 | 11.1+ | bf16 * bf16 + f32 => {bf16, f32} |
{N,T} x {N,T} => {N,T} | example |
SpTensorOp | 80 | 11.1+ | tf32 * tf32 + f32 => f32 |
{N,T} x {N,T} => {N,T} | example |
SpTensorOp | 80 | 11.1+ | s8 * s8 + s32 => {s8, s32} |
{N,T} x {N,T} => {N,T} | example |
SpTensorOp | 80 | 11.1+ | s4 * s4 + s32 => {s4, s32} |
{N,T} x {N,T} => {N,T} | example |
The following table summarizes device-level implicit GEMM convolution kernels in CUTLASS, organized by opcode class, data type, and layout. Hyperlinks to relevant conv2d fprop unit tests demonstrate how specific template instances may be defined. One can find and/or create equivalent dgrad and wgrad convolutional operators.
Opcode Class | Compute Capability | CUDA Toolkit | Data Type | Layouts | Unit Test |
---|---|---|---|---|---|
Simt | 50,60,61,70,75 | 9.2+ | f32 * f32 + f32 => f32 |
NHWC | example |
Simt | 50,60,61,70,75 | 9.2+ | cf32 * cf32 + cf32 => cf32 |
NHWC | example |
TensorOp | 70 | 10.1+ | f16 * f16 + f32 => {f16, f32} |
NHWC | example |
TensorOp | 75 | 10.2+ | f16 * f16 + f32 => {f16, f32} |
NHWC | example |
TensorOp | 75 | 10.2+ | s8 * s8 + s32 => {s32, s8} |
NHWC, NCxHWx | example, ncxhwx |
TensorOp | 75 | 10.2+ | s4 * s4 + s32 => {s32, s4} |
NHWC, NCxHWx | example, ncxhwx |
Simt | 80 | 11.0+ | f32 * f32 + f32 => f32 |
NHWC | example |
Simt | 80 | 11.0+ | cf32 * cf32 + cf32 => cf32 |
NHWC | example |
TensorOp | 80 | 11.0+ | f16 * f16 + f32 => {f16, f32} |
NHWC | example |
TensorOp | 80 | 11.0+ | f16 * f16 + f16 => f16 |
NHWC | example |
TensorOp | 80 | 11.0+ | tf32 * tf32 + f32 => f32 |
NHWC | example |
TensorOp | 80 | 11.0+ | s8 * s8 + s32 => {s32, s8} |
NHWC, NCxHWx | example, ncxhwx |
TensorOp | 80 | 11.0+ | s4 * s4 + s32 => {s32, s4} |
NHWC, NCxHWx | example, ncxhwx |
The following table summarizes supported warp level shapes for each TensorOp instruction.
Opcode Class | Instruction Shape | Warp Shapes |
---|---|---|
TensorOp | 8-by-8-by-4 | 32x32x4, 32x64x4, 64x32x4, 64x64x4 |
TensorOp | 16-by-8-by-8 | 32x32x8, 32x64x8, 64x32x8, 64x64x8 |
TensorOp | 16-by-8-by-16 | 32x32x16, 32x64x16, 64x32x16, 64x64x16 |
TensorOp | 8-by-8-by-16 | 32x32x16, 32x64x16, 64x32x16, 64x64x16 |
TensorOp | 8-by-8-by-32 | 32x32x32, 32x64x32, 64x32x32, 64x64x32 |
TensorOp | 16-by-8-by-32 | 32x32x32, 32x64x32, 64x32x32, 64x64x32 |
TensorOp | 16-by-8-by-64 | 32x32x64, 32x64x64, 64x32x64, 64x64x64 |
TensorOp | 8-by-8-by-128 | 32x32x128, 32x64x128, 64x32x128, 64x64x128 |
TensorOp | 16-by-8-by-256 | 32x32x256, 32x64x256, 64x32x256, 64x64x256 |
SpTensorOp | 16-by-8-by-16 | 64x64x16, 64x32x16, 32x64x16, 32x32x16 |
SpTensorOp | 16-by-8-by-32 | 64x64x32, 64x32x32, 32x64x32, 32x32x32 |
SpTensorOp | 16-by-8-by-64 | 64x64x64, 64x32x64, 32x64x64, 32x32x64 |
SpTensorOp | 16-by-8-by-128 | 64x64x128, 64x32x128, 32x64x128, 32x32x128 |
TensorOp instructions depend on a permuted shared memory layout that can be efficiently loaded from. The following tables summarize the destination shared memory layout that can be targeted by matrix operands. It is assumed that each thread loads 128b vectors from global memory with layout specified in the column "GMEM Layout."
TensorOp 8-by-8-by-4.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | half_t |
ColumnMajor |
ColumnMajorVoltaTensorOpCongruous<16> |
A | half_t |
RowMajor |
RowMajorVoltaTensorOpCrosswise<16> |
B | half_t |
ColumnMajor |
ColumnMajorVoltaTensorOpCrosswise<16> |
B | half_t |
RowMajor |
RowMajorVoltaTensorOpCongruous<16> |
C | half_t |
RowMajor |
RowMajor |
C | float |
RowMajor |
RowMajor |
TensorOp 16-by-8-by-8.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | half_t |
ColumnMajor |
ColumnMajorTensorOpCongruous<16> |
A | half_t |
RowMajor |
RowMajorTensorOpCrosswise<16> |
B | half_t |
ColumnMajor |
ColumnMajorTensorOpCrosswise<16> |
B | half_t |
RowMajor |
RowMajorTensorOpCongruous<16> |
C | half_t |
RowMajor |
RowMajor |
C | float |
RowMajor |
RowMajor |
TensorOp 16-by-8-by-8.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | tfloat32_t |
ColumnMajor |
ColumnMajorTensorOpCongruous<32> |
A | tfloat32_t |
RowMajor |
RowMajorTensorOpCrosswise<32> |
B | tfloat32_t |
ColumnMajor |
ColumnMajorTensorOpCrosswise<32> |
B | tfloat32_t |
RowMajor |
RowMajorTensorOpCongruous<32> |
C | float |
RowMajor |
RowMajor |
TensorOp 16-by-8-by-16.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | half_t , bfloat16_t |
ColumnMajor |
ColumnMajorTensorOpCongruous<16> |
A | half_t , bfloat16_t |
RowMajor |
RowMajorTensorOpCrosswise<16> |
B | half_t , bfloat16_t |
ColumnMajor |
ColumnMajorTensorOpCrosswise<16> |
B | half_t , bfloat16_t |
RowMajor |
RowMajorTensorOpCongruous<16> |
C | half_t |
RowMajor |
RowMajor |
C | float |
RowMajor |
RowMajor |
TensorOp 8-by-8-by-4.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | double |
ColumnMajor |
ColumnMajorTensorOpCongruous<64> |
A | double |
RowMajor |
RowMajorTensorOpCrosswise<64> |
B | double |
ColumnMajor |
ColumnMajorTensorOpCrosswise<64> |
B | double |
RowMajor |
RowMajorTensorOpCongruous<64> |
C | double |
RowMajor |
RowMajor |
TensorOp 8-by-8-by-16.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | int8_t |
RowMajor |
RowMajorTensorOpCrosswise<8> |
B | int8_t |
ColumnMajor |
ColumnMajorTensorOpCongruous<8> |
C | int32_t |
RowMajor |
RowMajor |
TensorOp 16-by-8-by-32.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | int8_t |
RowMajor |
RowMajorTensorOpCrosswise<8> |
B | int8_t |
ColumnMajor |
ColumnMajorTensorOpCongruous<8> |
C | int32_t |
RowMajor |
RowMajor |
TensorOp 8-by-8-by-32.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | int4b_t |
RowMajor |
RowMajorTensorOpCrosswise<4> |
B | int4b_t |
ColumnMajor |
ColumnMajorTensorOpCongruous<4> |
C | int32_t |
RowMajor |
RowMajor |
TensorOp 16-by-8-by-64.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | int4b_t |
RowMajor |
RowMajorTensorOpCrosswise<4> |
B | int4b_t |
ColumnMajor |
ColumnMajorTensorOpCongruous<4> |
C | int32_t |
RowMajor |
RowMajor |
TensorOp 8-by-8-by-128.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | bin1_t |
RowMajor |
RowMajorTensorOpCrosswise<4> |
B | bin1_t |
ColumnMajor |
ColumnMajorTensorOpCongruous<4> |
C | int32_t |
RowMajor |
RowMajor |
SpTensorOp 16-by-8-by-16.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | tfloat32_t |
RowMajor |
RowMajorTensorOpCrosswise<32, 32> |
B | tfloat32_t |
ColumnMajor |
ColumnMajorTensorOpCrosswise<32, 32> |
C | float |
RowMajor |
RowMajor |
SpTensorOp 16-by-8-by-32.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | half_t |
RowMajor |
RowMajorTensorOpCrosswise<16, 64> |
B | half_t |
ColumnMajor |
ColumnMajorTensorOpCrosswise<16, 64> |
C | float |
RowMajor |
RowMajor |
SpTensorOp 16-by-8-by-64.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | int8_t |
RowMajor |
RowMajorTensorOpCrosswise<8, 128> |
B | int8_t |
ColumnMajor |
ColumnMajorTensorOpCrosswise<8, 128> |
C | int32_t |
RowMajor |
RowMajor |
SpTensorOp 16-by-8-by-128.
Operand | Element | GMEM Layout | SMEM Layout |
---|---|---|---|
A | int4b_t |
RowMajor |
RowMajorTensorOpCrosswise<4, 256> |
B | int4b_t |
ColumnMajor |
ColumnMajorTensorOpCrosswise<4, 256> |
C | int32_t |
RowMajor |
RowMajor |
The following table summarizes supported warp level shapes for each WmmaTensorOp instruction.
Opcode Class | Instruction Shape | Warp Shapes |
---|---|---|
WmmaTensorOp | 16-by-16-by-16 | 32x32x16, 32x64x16, 64x32x16 |
WmmaTensorOp | 8-by-32-by-16 | 32x32x16, 32x64x16, 64x32x16 |
WmmaTensorOp | 32-by-8-by-16 | 32x32x16, 32x64x16, 64x32x16 |
WmmaTensorOp | 8-by-8-by-32 | 32x32x32, 32x64x32, 64x32x32, 64x64x32 |
WmmaTensorOp | 8-by-8-by-128 | 32x32x128, 32x64x128, 64x32x128, 64x64x128 |
CUDA exposes warp-level matrix operations in the CUDA C++ WMMA API. The CUDA C++ WMMA API exposes Tensor Cores via a set of functions and types in the nvcuda::wmma
namespace. The functions and types in nvcuda::wmma
provide target-independent APIs and implement architecture-specific tensor operation using TensorOp instruction underneath. CUTLASS exposes WMMA API through WmmaTensorOp. The WmmaTensorOp supports canonical shared memory layouts. The following table summarizes the destination shared memory layout that can be targeted by matrix operands. The WMMA API expects that matrices in shared memory loaded by nvcuda::wmma::load_matrix_sync()
satisfy 128 bit alignment.
WmmaTensorOp (all matrix sizes and data types).
Operand | GMEM Layout | SMEM Layout |
---|---|---|
A | RowMajor , ColumnMajor |
RowMajor , ColumnMajor |
B | RowMajor , ColumnMajor |
RowMajor , ColumnMajor |
C | RowMajor , ColumnMajor |
RowMajor , ColumnMajor |
Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
* Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.