Skip to content

Latest commit

 

History

History
274 lines (214 loc) · 23.5 KB

functionality.md

File metadata and controls

274 lines (214 loc) · 23.5 KB

ALT

README > Functionality

Functionality

Device-level GEMM

The following table summarizes device-level GEMM kernels in CUTLASS, organized by opcode class, data type, and layout. Hyperlinks to relevant unit tests demonstrate how specific template instances may be defined.

Opcode Class Compute Capability CUDA Toolkit Data Type Layouts Unit Test
Simt 50,60,61,70,75 9.2+ f32 * f32 + f32 => f32 {N,T} x {N,T} => {N,T} example
Simt 50,60,61,70,75 9.2+ f64 * f64 + f64 => f64 {N,T} x {N,T} => {N,T} example
Simt 60,61,70,75 9.2+ f16 * f16 + f16 => f16 {N,T} x {N,T} => {N,T} example
Simt 61,70,75 9.2+ s8 * s8 + s32 => {s32,s8} {N,T} x {N,T} => {N,T} example
WmmaTensorOp 70 9.2+ f16 * f16 + f16 => f16 {N,T} x {N,T} => {N,T} example
WmmaTensorOp 70 9.2+ f16 * f16 + f32 => {f16, f32} {N,T} x {N,T} => {N,T} example
WmmaTensorOp 75 10.0+ s8 * s8 + s32 => {s32, s8} {N,T} x {N,T} => {N,T} example
WmmaTensorOp 75 10.0+ s4 * s4 + s32 => {s32, s4} {N,T} x {N,T} => {N,T} example
WmmaTensorOp 75 10.0+ b1 ^ b1 + s32 => {s32, b1} { T } x { N } => {N,T} example
TensorOp 70 10.1+ f16 * f16 + f16 => f16 {N,T} x {N,T} => {N,T} example
TensorOp 70 10.1+ f16 * f16 + f32 => {f16, f32} {N,T} x {N,T} => {N,T} example
TensorOp 75 10.2+ f16 * f16 + f16 => f16 {N,T} x {N,T} => {N,T} example
TensorOp 75 10.2+ f16 * f16 + f32 => {f16, f32} {N,T} x {N,T} => {N,T} example
TensorOp 75 10.2+ s8 * s8 + s32 => {s32, s8} { T } x { N } => {N,T} example
TensorOp 75 10.2+ s4 * s4 + s32 => {s32, s4} { T } x { N } => {N,T} example
TensorOp 75 10.2+ b1 ^ b1 + s32 => {s32, b1} { T } x { N } => {N,T} example
TensorOp 80 11.0+ f16 * f16 + f16 => f16 {N,T} x {N,T} => {N,T} example
TensorOp 80 11.0+ f16 * f16 + f32 => {f16, f32} {N,T} x {N,T} => {N,T} example
TensorOp 80 11.0+ bf16 * bf16 + f32 => {bf16, f32} {N,T} x {N,T} => {N,T} example
TensorOp 80 11.0+ tf32 * tf32 + f32 => f32 {N,T} x {N,T} => {N,T} example
TensorOp 80 11.0+ s8 * s8 + s32 => {s32, s8} { T } x { N } => {N,T} example
TensorOp 80 11.0+ s4 * s4 + s32 => {s32, s4} { T } x { N } => {N,T} example
TensorOp 80 11.0+ b1 ^ b1 + s32 => {s32, b1} { T } x { N } => {N,T} example
TensorOp 80 11.0+ f64 * f64 + f64 => f64 {N,T} x {N,T} => {N,T} example
TensorOp 80 11.0+ cf32 * cf32 + cf32 => cf32 {N,T} x {N,T} => {N,T} example
TensorOp 80 11.0+ cf64 * cf64 + cf64 => cf64 {N,T} x {N,T} => {N,T} example, Gaussian 3m
SpTensorOp 80 11.1+ f16 * f16 + f32 => {f16, f32} {N,T} x {N,T} => {N,T} example
SpTensorOp 80 11.1+ bf16 * bf16 + f32 => {bf16, f32} {N,T} x {N,T} => {N,T} example
SpTensorOp 80 11.1+ tf32 * tf32 + f32 => f32 {N,T} x {N,T} => {N,T} example
SpTensorOp 80 11.1+ s8 * s8 + s32 => {s8, s32} {N,T} x {N,T} => {N,T} example
SpTensorOp 80 11.1+ s4 * s4 + s32 => {s4, s32} {N,T} x {N,T} => {N,T} example

Device-level Implicit GEMM convolution

The following table summarizes device-level implicit GEMM convolution kernels in CUTLASS, organized by opcode class, data type, and layout. Hyperlinks to relevant conv2d fprop unit tests demonstrate how specific template instances may be defined. One can find and/or create equivalent dgrad and wgrad convolutional operators.

Opcode Class Compute Capability CUDA Toolkit Data Type Layouts Unit Test
Simt 50,60,61,70,75 9.2+ f32 * f32 + f32 => f32 NHWC example
Simt 50,60,61,70,75 9.2+ cf32 * cf32 + cf32 => cf32 NHWC example
TensorOp 70 10.1+ f16 * f16 + f32 => {f16, f32} NHWC example
TensorOp 75 10.2+ f16 * f16 + f32 => {f16, f32} NHWC example
TensorOp 75 10.2+ s8 * s8 + s32 => {s32, s8} NHWC, NCxHWx example, ncxhwx
TensorOp 75 10.2+ s4 * s4 + s32 => {s32, s4} NHWC, NCxHWx example, ncxhwx
Simt 80 11.0+ f32 * f32 + f32 => f32 NHWC example
Simt 80 11.0+ cf32 * cf32 + cf32 => cf32 NHWC example
TensorOp 80 11.0+ f16 * f16 + f32 => {f16, f32} NHWC example
TensorOp 80 11.0+ f16 * f16 + f16 => f16 NHWC example
TensorOp 80 11.0+ tf32 * tf32 + f32 => f32 NHWC example
TensorOp 80 11.0+ s8 * s8 + s32 => {s32, s8} NHWC, NCxHWx example, ncxhwx
TensorOp 80 11.0+ s4 * s4 + s32 => {s32, s4} NHWC, NCxHWx example, ncxhwx

Warp-level Matrix Multiply with Tensor Cores

The following table summarizes supported warp level shapes for each TensorOp instruction.

Opcode Class Instruction Shape Warp Shapes
TensorOp 8-by-8-by-4 32x32x4, 32x64x4, 64x32x4, 64x64x4
TensorOp 16-by-8-by-8 32x32x8, 32x64x8, 64x32x8, 64x64x8
TensorOp 16-by-8-by-16 32x32x16, 32x64x16, 64x32x16, 64x64x16
TensorOp 8-by-8-by-16 32x32x16, 32x64x16, 64x32x16, 64x64x16
TensorOp 8-by-8-by-32 32x32x32, 32x64x32, 64x32x32, 64x64x32
TensorOp 16-by-8-by-32 32x32x32, 32x64x32, 64x32x32, 64x64x32
TensorOp 16-by-8-by-64 32x32x64, 32x64x64, 64x32x64, 64x64x64
TensorOp 8-by-8-by-128 32x32x128, 32x64x128, 64x32x128, 64x64x128
TensorOp 16-by-8-by-256 32x32x256, 32x64x256, 64x32x256, 64x64x256
SpTensorOp 16-by-8-by-16 64x64x16, 64x32x16, 32x64x16, 32x32x16
SpTensorOp 16-by-8-by-32 64x64x32, 64x32x32, 32x64x32, 32x32x32
SpTensorOp 16-by-8-by-64 64x64x64, 64x32x64, 32x64x64, 32x32x64
SpTensorOp 16-by-8-by-128 64x64x128, 64x32x128, 32x64x128, 32x32x128

TensorOp instructions depend on a permuted shared memory layout that can be efficiently loaded from. The following tables summarize the destination shared memory layout that can be targeted by matrix operands. It is assumed that each thread loads 128b vectors from global memory with layout specified in the column "GMEM Layout."

TensorOp 8-by-8-by-4.

Operand Element GMEM Layout SMEM Layout
A half_t ColumnMajor ColumnMajorVoltaTensorOpCongruous<16>
A half_t RowMajor RowMajorVoltaTensorOpCrosswise<16>
B half_t ColumnMajor ColumnMajorVoltaTensorOpCrosswise<16>
B half_t RowMajor RowMajorVoltaTensorOpCongruous<16>
C half_t RowMajor RowMajor
C float RowMajor RowMajor

TensorOp 16-by-8-by-8.

Operand Element GMEM Layout SMEM Layout
A half_t ColumnMajor ColumnMajorTensorOpCongruous<16>
A half_t RowMajor RowMajorTensorOpCrosswise<16>
B half_t ColumnMajor ColumnMajorTensorOpCrosswise<16>
B half_t RowMajor RowMajorTensorOpCongruous<16>
C half_t RowMajor RowMajor
C float RowMajor RowMajor

TensorOp 16-by-8-by-8.

Operand Element GMEM Layout SMEM Layout
A tfloat32_t ColumnMajor ColumnMajorTensorOpCongruous<32>
A tfloat32_t RowMajor RowMajorTensorOpCrosswise<32>
B tfloat32_t ColumnMajor ColumnMajorTensorOpCrosswise<32>
B tfloat32_t RowMajor RowMajorTensorOpCongruous<32>
C float RowMajor RowMajor

TensorOp 16-by-8-by-16.

Operand Element GMEM Layout SMEM Layout
A half_t, bfloat16_t ColumnMajor ColumnMajorTensorOpCongruous<16>
A half_t, bfloat16_t RowMajor RowMajorTensorOpCrosswise<16>
B half_t, bfloat16_t ColumnMajor ColumnMajorTensorOpCrosswise<16>
B half_t, bfloat16_t RowMajor RowMajorTensorOpCongruous<16>
C half_t RowMajor RowMajor
C float RowMajor RowMajor

TensorOp 8-by-8-by-4.

Operand Element GMEM Layout SMEM Layout
A double ColumnMajor ColumnMajorTensorOpCongruous<64>
A double RowMajor RowMajorTensorOpCrosswise<64>
B double ColumnMajor ColumnMajorTensorOpCrosswise<64>
B double RowMajor RowMajorTensorOpCongruous<64>
C double RowMajor RowMajor

TensorOp 8-by-8-by-16.

Operand Element GMEM Layout SMEM Layout
A int8_t RowMajor RowMajorTensorOpCrosswise<8>
B int8_t ColumnMajor ColumnMajorTensorOpCongruous<8>
C int32_t RowMajor RowMajor

TensorOp 16-by-8-by-32.

Operand Element GMEM Layout SMEM Layout
A int8_t RowMajor RowMajorTensorOpCrosswise<8>
B int8_t ColumnMajor ColumnMajorTensorOpCongruous<8>
C int32_t RowMajor RowMajor

TensorOp 8-by-8-by-32.

Operand Element GMEM Layout SMEM Layout
A int4b_t RowMajor RowMajorTensorOpCrosswise<4>
B int4b_t ColumnMajor ColumnMajorTensorOpCongruous<4>
C int32_t RowMajor RowMajor

TensorOp 16-by-8-by-64.

Operand Element GMEM Layout SMEM Layout
A int4b_t RowMajor RowMajorTensorOpCrosswise<4>
B int4b_t ColumnMajor ColumnMajorTensorOpCongruous<4>
C int32_t RowMajor RowMajor

TensorOp 8-by-8-by-128.

Operand Element GMEM Layout SMEM Layout
A bin1_t RowMajor RowMajorTensorOpCrosswise<4>
B bin1_t ColumnMajor ColumnMajorTensorOpCongruous<4>
C int32_t RowMajor RowMajor

SpTensorOp 16-by-8-by-16.

Operand Element GMEM Layout SMEM Layout
A tfloat32_t RowMajor RowMajorTensorOpCrosswise<32, 32>
B tfloat32_t ColumnMajor ColumnMajorTensorOpCrosswise<32, 32>
C float RowMajor RowMajor

SpTensorOp 16-by-8-by-32.

Operand Element GMEM Layout SMEM Layout
A half_t RowMajor RowMajorTensorOpCrosswise<16, 64>
B half_t ColumnMajor ColumnMajorTensorOpCrosswise<16, 64>
C float RowMajor RowMajor

SpTensorOp 16-by-8-by-64.

Operand Element GMEM Layout SMEM Layout
A int8_t RowMajor RowMajorTensorOpCrosswise<8, 128>
B int8_t ColumnMajor ColumnMajorTensorOpCrosswise<8, 128>
C int32_t RowMajor RowMajor

SpTensorOp 16-by-8-by-128.

Operand Element GMEM Layout SMEM Layout
A int4b_t RowMajor RowMajorTensorOpCrosswise<4, 256>
B int4b_t ColumnMajor ColumnMajorTensorOpCrosswise<4, 256>
C int32_t RowMajor RowMajor

Warp-level Matrix Multiply with CUDA WMMA API

The following table summarizes supported warp level shapes for each WmmaTensorOp instruction.

Opcode Class Instruction Shape Warp Shapes
WmmaTensorOp 16-by-16-by-16 32x32x16, 32x64x16, 64x32x16
WmmaTensorOp 8-by-32-by-16 32x32x16, 32x64x16, 64x32x16
WmmaTensorOp 32-by-8-by-16 32x32x16, 32x64x16, 64x32x16
WmmaTensorOp 8-by-8-by-32 32x32x32, 32x64x32, 64x32x32, 64x64x32
WmmaTensorOp 8-by-8-by-128 32x32x128, 32x64x128, 64x32x128, 64x64x128

CUDA exposes warp-level matrix operations in the CUDA C++ WMMA API. The CUDA C++ WMMA API exposes Tensor Cores via a set of functions and types in the nvcuda::wmma namespace. The functions and types in nvcuda::wmma provide target-independent APIs and implement architecture-specific tensor operation using TensorOp instruction underneath. CUTLASS exposes WMMA API through WmmaTensorOp. The WmmaTensorOp supports canonical shared memory layouts. The following table summarizes the destination shared memory layout that can be targeted by matrix operands. The WMMA API expects that matrices in shared memory loaded by nvcuda::wmma::load_matrix_sync() satisfy 128 bit alignment.

WmmaTensorOp (all matrix sizes and data types).

Operand GMEM Layout SMEM Layout
A RowMajor, ColumnMajor RowMajor, ColumnMajor
B RowMajor, ColumnMajor RowMajor, ColumnMajor
C RowMajor, ColumnMajor RowMajor, ColumnMajor

Copyright

Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.

  Redistribution and use in source and binary forms, with or without modification, are permitted
  provided that the following conditions are met:
      * Redistributions of source code must retain the above copyright notice, this list of
        conditions and the following disclaimer.
      * Redistributions in binary form must reproduce the above copyright notice, this list of
        conditions and the following disclaimer in the documentation and/or other materials
        provided with the distribution.
      * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
        to endorse or promote products derived from this software without specific prior written
        permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
  IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
  FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
  OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.