-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
481 lines (391 loc) · 19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import copy
import json
import os
import warnings
from absl import app, flags
from tqdm import trange
import torch
import numpy as np
from torchvision.datasets import ImageFolder
from torchvision.datasets import CIFAR10, CIFAR100
from torchvision.utils import make_grid, save_image
from torchvision import transforms
try:
from tensorboardX import SummaryWriter
except Exception as err:
pass
from diffusion import GaussianDiffusionTrainer, GaussianDiffusionSampler
from model.model import UNet
from model.classifier import HalveUNetClassifier
from utils.augmentation import *
from dataset import ImbalanceCIFAR100, ImbalanceCIFAR10
from score.both import get_inception_and_fid_score
from utils.augmentation import KarrasAugmentationPipeline
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
FLAGS = flags.FLAGS
flags.DEFINE_bool('train', False, help='train from scratch')
flags.DEFINE_bool('resume',False,help='resume from a checkpoint')
flags.DEFINE_bool('count_transfer',False,help='count transfer')
flags.DEFINE_string('resume_ckpt','./',help='the resumed checkpoint')
flags.DEFINE_bool('eval', False, help='load model.pt and evaluate FID and IS')
flags.DEFINE_bool('cal_score',False,help='calculate scores from npy file')
# UNet
flags.DEFINE_integer('ch', 128, help='base channel of UNet')
flags.DEFINE_multi_integer('ch_mult', [1, 2, 2, 2], help='channel multiplier')
flags.DEFINE_multi_integer('attn', [1], help='add attention to these levels')
flags.DEFINE_integer('num_res_blocks', 2, help='# resblock in each level')
flags.DEFINE_float('dropout', 0.1, help='dropout rate of resblock')
flags.DEFINE_bool('improve', False, help='use improved diffusion network implemented by OpenAI')
# Gaussian Diffusion
flags.DEFINE_float('beta_1', 1e-4, help='start beta value')
flags.DEFINE_float('beta_T', 0.02, help='end beta value')
flags.DEFINE_integer('T', 1000, help='total diffusion steps')
flags.DEFINE_enum('var_type', 'fixedlarge', ['fixedlarge', 'fixedsmall'], help='variance type')
# Training
flags.DEFINE_float('lr', 2e-4, help='target learning rate')
flags.DEFINE_float('grad_clip', 1., help='gradient norm clipping')
flags.DEFINE_integer('total_steps', 500001, help='total training steps')
flags.DEFINE_integer('img_size', 32, help='image size')
flags.DEFINE_integer('warmup', 5000, help='learning rate warmup')
flags.DEFINE_integer('batch_size', 128, help='batch size')
flags.DEFINE_integer('num_workers', 4, help='workers of Dataloader')
flags.DEFINE_float('ema_decay', 0.9999, help='ema decay rate')
flags.DEFINE_bool('parallel', False, help='multi gpu training')
flags.DEFINE_bool('conditional', False, help='conditional generation')
flags.DEFINE_string('gen_imgs_dir','./',help='generated images directory')
flags.DEFINE_bool('weight', False, help='reweight')
flags.DEFINE_bool('cotrain', False, help='cotrain with an adjusted classifier or not')
flags.DEFINE_bool('logit', False, help='use logit adjustment or not')
flags.DEFINE_bool('augm', False, help='whether to use ADA augmentation')
flags.DEFINE_bool('cfg', False, help='whether to train unconditional generation with with 10\% probability')
# Dataset
flags.DEFINE_string('data_type', 'cifar100', help='data type, must be in [cifar10, cifar100, cifar10lt, cifar100lt,imagenet200lt,imgnetLT]')
flags.DEFINE_float('imb_factor', 0.01, help='imb_factor for long tail dataset')
flags.DEFINE_float('num_class', 0, help='number of class of the pretrained model')
flags.DEFINE_float('omega', 1.5, help='number of class of the pretrained model')
# Logging & Sampling
flags.DEFINE_string('logdir', './logs/', help='log directory')
flags.DEFINE_integer('sample_size', 64, 'sampling size of images')
flags.DEFINE_integer('sample_step', 10000, help='frequency of sampling')
# Evaluation
flags.DEFINE_integer('save_step', 100000, help='frequency of saving checkpoints, 0 to disable during training')
flags.DEFINE_integer('eval_step', 0, help='frequency of evaluating model, 0 to disable during training')
flags.DEFINE_integer('num_images', 50000, help='the number of generated images for evaluation')
flags.DEFINE_integer('private_num_images', 0, help='the number of private images for evaluation')
flags.DEFINE_bool('fid_use_torch', False, help='calculate IS and FID on gpu')
flags.DEFINE_string('fid_cache', './stats/cifar10.train.npz', help='FID cache')
flags.DEFINE_string('sample_name', 'saved', help='name for a set of samples to be saved or to be evaluated')
flags.DEFINE_bool('sampled', False, help='evaluate sampled images')
flags.DEFINE_string('sample_method', 'cfg', help='sampling method, must be in [cfg, cond, uncond]')
# CBDM hyperparameter
flags.DEFINE_bool('transfer_x0',False,help='transfering x0 to other index based on L2 norm')
flags.DEFINE_bool('transfer_tr_tau',False,help='transfering x0 with adjusted tau')
flags.DEFINE_bool('transfer_mixing',False,help='whether to using transfer')
flags.DEFINE_bool('bal_sample',False,help='whether to using transfer')
flags.DEFINE_string('transfer_mode', 'full', help='transfer_mode')
flags.DEFINE_float('tr_tau', 1.0, help='weight for transfer power')
flags.DEFINE_float('w', 2.0, help='w')
device = torch.device('cuda:0')
def uniform_sampling(n, N, k):
return np.stack([np.random.randint(int(N/n)*i, int(N/n)*(i+1), k) for i in range(n)])
def ema(source, target, decay):
source_dict = source.state_dict()
target_dict = target.state_dict()
for key in source_dict.keys():
target_dict[key].data.copy_(
target_dict[key].data * decay +
source_dict[key].data * (1 - decay))
def infiniteloop(dataloader):
while True:
for x, y in iter(dataloader):
yield x, y
def warmup_lr(step):
return min(step, FLAGS.warmup) / FLAGS.warmup
def evaluate(sampler, model, sampled):
if not sampled:
model.eval()
with torch.no_grad():
images = []
labels = []
desc = 'generating images'
for i in trange(0, FLAGS.num_images, FLAGS.batch_size, desc=desc):
batch_size = min(FLAGS.batch_size, FLAGS.num_images - i)
x_T = torch.randn((batch_size, 3, FLAGS.img_size, FLAGS.img_size))
batch_images, batch_labels = sampler(x_T.to(device),
omega=FLAGS.omega,
method=FLAGS.sample_method)
images.append((batch_images.cpu() + 1) / 2)
if FLAGS.sample_method!='uncond' and batch_labels is not None:
labels.append(batch_labels.cpu())
images = torch.cat(images, dim=0).numpy()
np.save(os.path.join(FLAGS.logdir, '{}_{}_samples_ema_{}.npy'.format(
FLAGS.sample_method, FLAGS.omega,
FLAGS.sample_name)), images)
if FLAGS.sample_method != 'uncond':
labels = torch.cat(labels, dim=0).numpy()
np.save(os.path.join(FLAGS.logdir, '{}_{}_labels_ema_{}.npy'.format(
FLAGS.sample_method, FLAGS.omega,
FLAGS.sample_name)), labels)
model.train()
else:
labels = None
images = np.load(os.path.join(FLAGS.logdir, '{}_{}_samples_ema_{}.npy'.format(
FLAGS.sample_method, FLAGS.omega,
FLAGS.sample_name)))
if FLAGS.sample_method != 'uncond':
labels = np.load(os.path.join(FLAGS.logdir, '{}_{}_labels_ema_{}.npy'.format(
FLAGS.sample_method, FLAGS.omega,
FLAGS.sample_name)))
save_image(
torch.tensor(images[:256]),
os.path.join(FLAGS.logdir, 'visual_ema_{}_{}_{}.png'.format(
FLAGS.sample_method, FLAGS.omega, FLAGS.sample_name)),
nrow=16)
(IS, IS_std), FID = get_inception_and_fid_score(
images, FLAGS.fid_cache, num_images=FLAGS.num_images,
use_torch=FLAGS.fid_use_torch, FLAGS=FLAGS)
return (IS, IS_std), FID
def train():
if FLAGS.augm:
tran_transform=transforms.Compose([
transforms.ToTensor(),
transforms.Resize([FLAGS.img_size, FLAGS.img_size]),
transforms.ToPILImage(),
KarrasAugmentationPipeline(0.12),
])
else:
tran_transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
transforms.Resize([FLAGS.img_size, FLAGS.img_size])
])
if FLAGS.data_type == 'cifar10':
dataset = CIFAR10(
root='./data',
# root='...',
train=True,
download=True,
transform=tran_transform
)
elif FLAGS.data_type == 'cifar100':
dataset = CIFAR100(
root='./data',
# root='...',
train=True,
download=True,
transform=tran_transform)
elif FLAGS.data_type == 'cifar10lt':
dataset = ImbalanceCIFAR10(
root='./data',
# root='...',
imb_type='exp',
imb_factor=FLAGS.imb_factor,
rand_number=0,
train=True,
transform=tran_transform,
target_transform=None,
download=True,
)
elif FLAGS.data_type == 'cifar100lt':
dataset = ImbalanceCIFAR100(
root='./data',
# root='...',
imb_type='exp',
imb_factor=FLAGS.imb_factor,
rand_number=0,
train=True,
transform=tran_transform,)
elif FLAGS.data_type == 'imagenet200lt':
full_dtset = ImageFolder(root='/remote-home/share/datasets/tiny-imagenet-200/train')
dataset = ImbalanceDataset(full_dtset.imgs,full_dtset.targets,transform=tran_transform)
else:
print('Please enter a data type included in [cifar10, cifar100, cifar10lt, cifar100lt]')
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=FLAGS.batch_size,
shuffle=True, num_workers=FLAGS.num_workers, drop_last=True) #FLAGS.num_workers
datalooper = infiniteloop(dataloader)
ref_datalooper = None
print('Dataset {} contains {} images with {} classes'.format(
FLAGS.data_type, len(dataset.targets), len(np.unique(dataset.targets))))
# get class weights for the current dataset
def class_counter(all_labels):
all_classes_count = torch.Tensor(np.unique(all_labels, return_counts=True)[1])
return all_classes_count / all_classes_count.sum()
weight = class_counter(dataset.targets).unsqueeze(0)
print(weight)
weight_transfer_matrix = weight.T @ weight
weight_power_matrix = torch.pow(weight_transfer_matrix,FLAGS.tr_tau)
net_model = UNet(
T=FLAGS.T, ch=FLAGS.ch, ch_mult=FLAGS.ch_mult, attn=FLAGS.attn,
num_res_blocks=FLAGS.num_res_blocks, dropout=FLAGS.dropout,
cond=FLAGS.conditional, augm=FLAGS.augm, num_class=int(FLAGS.num_class))
ema_model = copy.deepcopy(net_model)
# training setup
optim = torch.optim.Adam(net_model.parameters(), lr=FLAGS.lr)
sched = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda=warmup_lr)
trainer = GaussianDiffusionTrainer(
net_model, FLAGS.beta_1, FLAGS.beta_T, FLAGS.T, dataset,
FLAGS.num_class, FLAGS.cfg, weight,
transfer_x0=FLAGS.transfer_x0,transfer_tr_tau=FLAGS.transfer_tr_tau,
transfer_mode=FLAGS.transfer_mode,label_weight_tr = weight_power_matrix).to(device)
net_sampler = GaussianDiffusionSampler(
net_model, FLAGS.beta_1, FLAGS.beta_T, FLAGS.T, FLAGS.num_class, FLAGS.img_size, FLAGS.var_type).to(device)
ema_sampler = GaussianDiffusionSampler(
ema_model, FLAGS.beta_1, FLAGS.beta_T, FLAGS.T, FLAGS.num_class, FLAGS.img_size, FLAGS.var_type).to(device)
if FLAGS.resume:
ckpt = torch.load(os.path.join(FLAGS.resume_ckpt,
'ckpt_{}.pt'.format(FLAGS.ckpt_step)),
map_location='cpu')
net_model.load_state_dict(ckpt['net_model'])
ema_model.load_state_dict(ckpt['ema_model'])
optim.load_state_dict(ckpt['optim'])
sched.load_state_dict(ckpt['sched'])
print('Loading checkpoint sussessfully from {}'.format(os.path.join(FLAGS.resume_ckpt,
'ckpt_{}.pt'.format(FLAGS.ckpt_step))))
if FLAGS.parallel:
trainer = torch.nn.DataParallel(trainer)
net_sampler = torch.nn.DataParallel(net_sampler)
ema_sampler = torch.nn.DataParallel(ema_sampler)
# log setup
if not os.path.exists(os.path.join(FLAGS.logdir, 'sample')):
os.makedirs(os.path.join(FLAGS.logdir, 'sample'))
else:
print('LOGDIR already exists.')
writer = SummaryWriter(FLAGS.logdir)
writer.flush()
# fix seeds for generation to keep generated images comparable
fixed_x_T = torch.randn(min(FLAGS.sample_size, 100), 3, FLAGS.img_size, FLAGS.img_size)
fixed_x_T = fixed_x_T.to(device)
# backup all arguments
with open(os.path.join(FLAGS.logdir, 'flagfile.txt'), 'w') as f:
f.write(FLAGS.flags_into_string())
# show model size
model_size = 0
for param in net_model.parameters():
model_size += param.data.nelement()
print('Model params: %.2f M' % (model_size / 1024 / 1024))
# start training
with trange(0, FLAGS.total_steps, dynamic_ncols=True) as pbar:
for step in pbar:
# train
optim.zero_grad()
uncond_flag_from_out = False
if ref_datalooper is not None:
if torch.rand(1)[0] < 1/10:
x_0,y_0 = next(ref_datalooper)
uncond_flag_from_out = True
else:
x_0,y_0 = next(datalooper)
else:
x_0,y_0 = next(datalooper)
# when using ADA, the augmentation parameters will also be returned by the dataloader
augm = None
if type(x_0) == list:
x_0, augm = x_0
augm = augm.to(device)
x_0 = x_0.to(device)
y_0 = y_0.to(device)
loss_ddpm, loss_reg = trainer(x_0, y_0, augm,uncond_flag_out=uncond_flag_from_out)
loss_ddpm = loss_ddpm.mean()
loss_reg = loss_reg.mean()
loss = loss_ddpm
loss.backward()
torch.nn.utils.clip_grad_norm_(
net_model.parameters(), FLAGS.grad_clip)
optim.step()
sched.step()
ema(net_model, ema_model, FLAGS.ema_decay)
# logs
writer.add_scalar('loss', loss, step)
writer.add_scalar('loss_ddpm', loss_ddpm, step)
writer.add_scalar('loss_reg', loss_reg, step)
pbar.set_postfix(loss='%.5f' % loss)
# sample
if step != 0 and step % FLAGS.sample_step == 0:
net_model.eval()
with torch.no_grad():
x_0, _ = ema_sampler(fixed_x_T)
grid = (make_grid(x_0) + 1) / 2
path = os.path.join(
FLAGS.logdir, 'sample', '%d.png' % step)
save_image(grid, path)
writer.add_image('sample', grid, step)
net_model.train()
# save
if FLAGS.save_step > 0 and step % FLAGS.save_step == 0:
ckpt = {
'net_model': net_model.state_dict(),
'ema_model': ema_model.state_dict(),
'sched': sched.state_dict(),
'optim': optim.state_dict(),
'step': step,
'fixed_x_T': fixed_x_T,
}
torch.save(ckpt, os.path.join(FLAGS.logdir, 'ckpt_{}.pt'.format(step)))
# evaluate
if FLAGS.eval_step > 0 and step % FLAGS.eval_step == 0:
# net_IS, net_FID, _ = evaluate(net_sampler, net_model)
ema_IS, ema_FID = evaluate(ema_sampler, ema_model, False)
metrics = {
'IS': ema_IS[0],
'IS_std': ema_IS[1],
'FID': ema_FID
}
print(step, metrics)
pbar.write(
'%d/%d ' % (step, FLAGS.total_steps) +
', '.join('%s:%.5f' % (k, v) for k, v in metrics.items()))
for name, value in metrics.items():
writer.add_scalar(name, value, step)
writer.flush()
with open(os.path.join(FLAGS.logdir, 'eval.txt'), 'a') as f:
metrics['step'] = step
f.write(json.dumps(metrics) + '\n')
writer.close()
def eval():
#FLAGS.num_class = 100 if 'cifar100' in FLAGS.data_type else 10
model = UNet(
T=FLAGS.T, ch=FLAGS.ch, ch_mult=FLAGS.ch_mult, attn=FLAGS.attn,
num_res_blocks=FLAGS.num_res_blocks, dropout=FLAGS.dropout,
cond=FLAGS.conditional, augm=FLAGS.augm, num_class=int(FLAGS.num_class))
sampler = GaussianDiffusionSampler(
model, FLAGS.beta_1, FLAGS.beta_T, FLAGS.T, FLAGS.num_class, FLAGS.img_size, FLAGS.var_type).to(device)
if FLAGS.parallel:
sampler = torch.nn.DataParallel(sampler)
FLAGS.sample_name = '{}_N{}_STEP{}'.format(FLAGS.sample_name, FLAGS.num_images, FLAGS.ckpt_step)
# load ema model (almost always better than the model) and evaluate
ckpt = torch.load(os.path.join(FLAGS.logdir, 'ckpt_{}.pt'.format(FLAGS.ckpt_step)), map_location='cpu')
# evaluate IS/FID
if 'cifar100' in FLAGS.data_type:
FLAGS.fid_cache = './stats/cifar100.train.npz'
else:
FLAGS.fid_cache = './stats/cifar10.train.npz'
if not FLAGS.sampled:
model.load_state_dict(ckpt['ema_model'])
else:
model = None
(IS, IS_std), FID = evaluate(sampler, model, FLAGS.sampled)
print('logdir', FLAGS.logdir)
with open(os.path.join(FLAGS.logdir, 'res_ema_{}.txt'.format(FLAGS.sample_name)), 'a+') as f:
f.write('Settings: NUM:{} EPOCH:{}, OMEGA:{}, METHOD:{} \n' .format (
FLAGS.num_images, FLAGS.ckpt_step, FLAGS.omega, FLAGS.sample_method))
f.write('Model(EMA): IS:%6.5f(%.5f), FID/CIFAR100:%7.5f \n' % (IS, IS_std, FID))
f.close()
print('Model(EMA): IS:%6.5f(%.5f), FID/CIFAR100:%7.5f \n' % (IS, IS_std, FID))
f.close()
def set_annealed_lr(opt, base_lr, frac_done):
lr = base_lr * (1 - frac_done)
for param_group in opt.param_groups:
param_group["lr"] = lr
def main(argv):
# suppress annoying inception_v3 initialization warning
warnings.simplefilter(action='ignore', category=FutureWarning)
if FLAGS.train:
train()
if FLAGS.eval:
eval()
# if not FLAGS.train and not FLAGS.eval:
# print('Add --train and/or --eval to execute corresponding tasks')
if __name__ == '__main__':
app.run(main)