-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain_eth_diverse.py
330 lines (271 loc) · 12.9 KB
/
main_eth_diverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import argparse
import torch
from eth_ucy.dataloader_diverse import eth_dataset
from eth_ucy.model_t import EqMotion
import os
from torch import nn, optim
import json
import time
import numpy as np
import matplotlib.pyplot as plt
import math
import random
parser = argparse.ArgumentParser(description='VAE MNIST Example')
parser.add_argument('--exp_name', type=str, default='exp_1', metavar='N', help='experiment_name')
parser.add_argument('--batch_size', type=int, default=100, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=60, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--past_length', type=int, default=8, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--future_length', type=int, default=12, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=-1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log_interval', type=int, default=1, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--test_interval', type=int, default=1, metavar='N',
help='how many epochs to wait before logging test')
parser.add_argument('--outf', type=str, default='n_body_system/logs', metavar='N',
help='folder to output vae')
parser.add_argument('--lr', type=float, default=5e-4, metavar='N',
help='learning rate')
parser.add_argument('--epoch_decay', type=int, default=2, metavar='N',
help='number of epochs for the lr decay')
parser.add_argument('--lr_gamma', type=float, default=0.8, metavar='N',
help='the lr decay ratio')
parser.add_argument('--nf', type=int, default=64, metavar='N',
help='learning rate')
parser.add_argument('--model', type=str, default='egnn_vel', metavar='N',
help='available models: gnn, baseline, linear, linear_vel, se3_transformer, egnn_vel, rf_vel, tfn')
parser.add_argument('--attention', type=int, default=0, metavar='N',
help='attention in the ae model')
parser.add_argument('--n_layers', type=int, default=4, metavar='N',
help='number of layers for the autoencoder')
parser.add_argument('--degree', type=int, default=2, metavar='N',
help='degree of the TFN and SE3')
parser.add_argument('--channels', type=int, default=64, metavar='N',
help='number of channels')
parser.add_argument('--max_training_samples', type=int, default=3000, metavar='N',
help='maximum amount of training samples')
parser.add_argument('--dataset', type=str, default="nbody", metavar='N',
help='nbody_small, nbody')
parser.add_argument('--sweep_training', type=int, default=0, metavar='N',
help='0 nor sweep, 1 sweep, 2 sweep small')
parser.add_argument('--time_exp', type=int, default=0, metavar='N',
help='timing experiment')
parser.add_argument('--weight_decay', type=float, default=1e-12, metavar='N',
help='timing experiment')
parser.add_argument('--div', type=float, default=1, metavar='N',
help='timing experiment')
parser.add_argument('--norm_diff', type=eval, default=False, metavar='N',
help='normalize_diff')
parser.add_argument('--tanh', type=eval, default=False, metavar='N',
help='use tanh')
parser.add_argument('--subset', type=str, default='eth',
help='Name of the subset.')
parser.add_argument('--model_save_dir', type=str, default='eth_ucy/saved_models',
help='Name of the subset.')
parser.add_argument('--scale', type=float, default=1, metavar='N',
help='dataset scale')
parser.add_argument("--apply_decay",action='store_true')
parser.add_argument("--res_pred",action='store_true')
parser.add_argument("--supervise_all",action='store_true')
parser.add_argument('--model_name', type=str, default='eth_ckpt_best', metavar='N',
help='dataset scale')
parser.add_argument('--test_scale', type=float, default=1, metavar='N',
help='dataset scale')
parser.add_argument("--test",action='store_true')
parser.add_argument("--vis",action='store_true')
time_exp_dic = {'time': 0, 'counter': 0}
args = parser.parse_args()
args.cuda = True
device = torch.device("cuda" if args.cuda else "cpu")
# loss_mse = nn.MSELoss()
print(args)
try:
os.makedirs(args.outf)
except OSError:
pass
try:
os.makedirs(args.outf + "/" + args.exp_name)
except OSError:
pass
if args.subset == 'zara1':
args.channels = 128
else:
args.channels = 64
if args.subset == 'hotel':
args.lr = 5e-4
else:
args.lr = 1e-3
if args.subset == 'eth':
args.test_scale = 1.6
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def lr_decay(optimizer, lr_now, gamma):
lr_new = lr_now * gamma
for param_group in optimizer.param_groups:
param_group['lr'] = lr_new
return lr_new
def main():
# seed = 861
if args.seed >= 0:
seed = args.seed
setup_seed(seed)
else:
seed = random.randint(0,1000)
setup_seed(seed)
print('The seed is :',seed)
past_length = args.past_length
future_length = args.future_length
dataset_train = eth_dataset(args.subset, args.past_length, args.future_length, args.scale, split='train', phase='training')
dataset_test = eth_dataset(args.subset, args.past_length, args.future_length, args.test_scale, split='test', phase='testing')
loader_train = torch.utils.data.DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True, drop_last=True,
num_workers=8)
loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=args.batch_size, shuffle=False, drop_last=False,
num_workers=8)
model = EqMotion(in_node_nf=args.past_length, in_edge_nf=2, hidden_nf=args.nf, in_channel=args.past_length, hid_channel=args.channels, out_channel=args.future_length,device=device, n_layers=args.n_layers, recurrent=True, norm_diff=args.norm_diff, tanh=args.tanh)
# print(model)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
if args.test:
model_path = args.model_save_dir + '/' + args.model_name +'.pth.tar'
print('Loading model from:', model_path)
model_ckpt = torch.load(model_path)
model.load_state_dict(model_ckpt['state_dict'], strict=False)
test_loss, ade = test(model, optimizer, 0, loader_test, backprop=False)
print('ade:',ade,'fde:',test_loss)
# if args.vis:
# model_path = args.model_save_dir + '/' + args.model_name +'.pth.tar'
# print('Loading model from:', model_path)
# model_ckpt = torch.load(model_path)
# model.load_state_dict(model_ckpt['state_dict'], strict=False)
# test_loss, ade = vis(model, optimizer, 0, loader_test, backprop=False)
results = {'epochs': [], 'losess': []}
best_val_loss = 1e8
best_test_loss = 1e8
best_ade = 1e8
best_epoch = 0
lr_now = args.lr
for epoch in range(0, args.epochs):
if args.apply_decay:
if epoch % args.epoch_decay == 0 and epoch > 0:
lr_now = lr_decay(optimizer, lr_now, args.lr_gamma)
train(model, optimizer, epoch, loader_train)
if epoch % args.test_interval == 0:
test_loss, ade = test(model, optimizer, epoch, loader_test, backprop=False)
results['epochs'].append(epoch)
results['losess'].append(test_loss)
if test_loss < best_test_loss:
best_test_loss = test_loss
best_ade = ade
best_epoch = epoch
state = {'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
file_path = os.path.join(args.model_save_dir, str(args.subset)+'_ckpt_best.pth.tar')
torch.save(state, file_path)
print("Best Test Loss: %.5f \t Best ade: %.5f \t Best epoch %d" % (best_test_loss, best_ade, best_epoch))
print('The seed is :',seed)
state = {'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
file_path = os.path.join(args.model_save_dir, str(args.subset)+'_ckpt_'+str(epoch)+'.pth.tar')
torch.save(state, file_path)
return best_val_loss, best_test_loss, best_epoch
constant = 1
def get_valid_mask2(num_valid,agent_num):
batch_size = num_valid.shape[0]
valid_mask = torch.zeros((batch_size,agent_num))
for i in range(batch_size):
valid_mask[i,:num_valid[i]] = 1
return valid_mask.unsqueeze(-1).unsqueeze(-1)
def train(model, optimizer, epoch, loader, backprop=True):
if backprop:
model.train()
else:
model.eval()
res = {'epoch': epoch, 'loss': 0, 'coord_reg': 0, 'counter': 0}
for batch_idx, data in enumerate(loader):
if data is not None:
loc, loc_end, num_valid = data
loc = loc.cuda()
loc_end = loc_end.cuda()
num_valid = num_valid.cuda()
num_valid = num_valid.type(torch.int)
vel = torch.zeros_like(loc)
vel[:,:,1:] = loc[:,:,1:] - loc[:,:,:-1]
vel[:,:,0] = vel[:,:,1]
batch_size, agent_num, length, _ = loc.size()
optimizer.zero_grad()
vel = vel * constant
nodes = torch.sqrt(torch.sum(vel ** 2, dim=-1)).detach()
loc_pred, category = model(nodes, loc.detach(), vel, num_valid)
loc_end = loc_end[:,:,None,:,:]
if args.supervise_all:
mask = get_valid_mask2(num_valid,agent_num)
mask = mask.cuda()
mask = mask[:,:,None,:,:]
loss = torch.mean(torch.min(torch.mean(torch.norm(mask*(loc_pred-loc_end),dim=-1),dim=3),dim=2)[0]) # only for ego agent
else:
loss = torch.mean(torch.min(torch.mean(torch.norm(loc_pred[:,0:1]-loc_end[:,0:1],dim=-1),dim=3),dim=2)[0]) # only for ego agent
if backprop:
loss.backward()
optimizer.step()
res['loss'] += loss.item() * batch_size
res['counter'] += batch_size
if not backprop:
prefix = "==> "
else:
prefix = ""
print('%s epoch %d avg loss: %.5f' % (prefix, epoch, res['loss'] / res['counter']))
return res['loss'] / res['counter']
def test(model, optimizer, epoch, loader, backprop=True):
if backprop:
model.train()
else:
model.eval()
validate_reasoning = False
if validate_reasoning:
acc_list = [0]*args.n_layers
res = {'epoch': epoch, 'loss': 0, 'coord_reg': 0, 'counter': 0, 'ade': 0}
with torch.no_grad():
for batch_idx, data in enumerate(loader):
if data is not None:
loc, loc_end, num_valid = data
loc = loc.cuda()
loc_end = loc_end.cuda()
num_valid = num_valid.cuda()
num_valid = num_valid.type(torch.int)
vel = torch.zeros_like(loc)
vel[:,:,1:] = loc[:,:,1:] - loc[:,:,:-1]
vel[:,:,0] = vel[:,:,1]
batch_size, agent_num, length, _ = loc.size()
optimizer.zero_grad()
vel = vel * constant
nodes = torch.sqrt(torch.sum(vel ** 2, dim=-1)).detach()
loc_pred, category_list = model(nodes, loc.detach(), vel, num_valid)
loc_pred = np.array(loc_pred.cpu()) # B,N,20,T,2 [:,0,:,:,:]
loc_end = np.array(loc_end.cpu()) # B,N,T,2 [:,0,:,:]
loc_end = loc_end[:,:,None,:,:]
ade = np.mean(np.min(np.mean(np.linalg.norm(loc_pred[:,0:1,:,:,:]-loc_end[:,0:1,:,:,:],axis=-1),axis=3),axis=2))
fde = np.mean(np.min(np.mean(np.linalg.norm(loc_pred[:,0:1,:,-1:,:]-loc_end[:,0:1,:,-1:,:],axis=-1),axis=3),axis=2))
res['loss'] += fde*batch_size
res['ade'] += ade*batch_size
res['counter'] += batch_size
res['ade'] *= args.test_scale
res['loss'] *= args.test_scale
if not backprop:
prefix = "==> "
else:
prefix = ""
print('%s epoch %d avg loss: %.5f ade: %.5f' % (prefix+'test', epoch, res['loss'] / res['counter'], res['ade'] / res['counter']))
return res['loss'] / res['counter'], res['ade'] / res['counter']
if __name__ == "__main__":
main()