-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
1033 lines (874 loc) · 55.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert or Roberta). """
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import random
import time
import numpy as np
import torch
from seqeval.metrics import precision_score, recall_score, f1_score
from tensorboardX import SummaryWriter
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file, read_examples_from_file_random
from transformers import AdamW, WarmupLinearSchedule
from transformers import WEIGHTS_NAME, BertConfig, BertTokenizer#, BertForTokenClassification
from transformers import RobertaConfig, RobertaForTokenClassification, RobertaTokenizer
from modelings.modeling_MSD import my_BertsoftmaxNER, my_BertsoftmaxNER_12class, my_BertsoftmaxNER_MMD, my_BertsoftmaxNER_MMD_KD, my_BertsoftmaxNER_unit
from itertools import cycle
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
ALL_MODELS = sum(
(tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig)),
())
MODEL_CLASSES = {
"bert": (BertConfig, my_BertsoftmaxNER_unit, BertTokenizer),
"roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer)
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
def train(args, model, train_dataset, tokenizer, labels, pad_token_label_id):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter(log_dir=args.log_dir)
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
no_grad = ["embeddings"] + ["layer." + str(layer_i) + "." for layer_i in range(12) if layer_i < args.freeze_bottom_layer]
logger.info(" The frozen parameters are:")
for n, p in model.named_parameters():
p.requires_grad = False if any(nd in n for nd in no_grad) else True
if not p.requires_grad:
logger.info(" %s", n)
optimizer_grouped_parameters = [
{"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": args.weight_decay},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
# scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=int(t_total*args.warmup_ratio), t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=args.gpu_ids)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" GPU IDs for training: %s", " ".join([str(id) for id in args.gpu_ids]))
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
best_score = 0.0
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
random_name_list = random.sample(list(range(100)),args.num_train_epochs)
for epoch_i in range(args.num_train_epochs):
train_dataset_noen = load_and_cache_examples_noen(args, str(random_name_list[epoch_i]), args.mmd_data_dir, tokenizer, labels, pad_token_label_id, mode="train")
train_sampler_noen = RandomSampler(train_dataset_noen) if args.local_rank == -1 else DistributedSampler(train_dataset_noen)
train_dataloader_noen = DataLoader(train_dataset_noen, sampler=train_sampler_noen, batch_size=args.train_batch_size)
for step, batch_2 in enumerate(zip(train_dataloader,cycle(train_dataloader_noen))):
batch = batch_2[0]
batch_noen = batch_2[1]
model.train()
# batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0].to(args.device),
"attention_mask": batch[1].to(args.device),
"token_type_ids": batch[2].to(args.device) if args.model_type in ["bert", "xlnet"] else None,
# XLM and RoBERTa don"t use segment_ids
"labels": batch[3].to(args.device) if len(batch) <= 4 else batch[-1],
"input_ids_other": batch_noen[0].to(args.device),
"attention_mask_other": batch_noen[1].to(args.device),
"token_type_ids_other": batch_noen[2].to(args.device) if args.model_type in ["bert", "xlnet"] else None,} # add hard-label scheme
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scheduler.step() # Update learning rate schedule
optimizer.step()
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
logger.info("===== evaluate_during_training =====")
results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev")
if results["f1"] > best_score:
logger.info("results['f1']={} > best_score={}".format(results["f1"], best_score))
best_score = results["f1"]
# Save the best model checkpoint
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
logger.info("Saving the best model checkpoint to %s", args.output_dir)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
logger.info("Epoch: {}\t global_step: {}\t eval_{}: {}".format(epoch_i,
global_step, key, value))
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logger.info(
"Epoch: {}\t global_step: {}\t learning rate: {:.8}\t loss: {:.4f}".format(
epoch_i, global_step, scheduler.get_lr()[0],
(tr_loss - logging_loss) / args.logging_steps))
logging_loss = tr_loss
# if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# # Save model checkpoint
# output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
# if not os.path.exists(output_dir):
# os.makedirs(output_dir)
# model_to_save = model.module if hasattr(model,
# "module") else model # Take care of distributed/parallel training
# model_to_save.save_pretrained(output_dir)
# torch.save(args, os.path.join(output_dir, "training_args.bin"))
# logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
break
if args.max_steps > 0 and global_step > args.max_steps:
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def train_KD(args, model, train_dataset, src_probs, tokenizer, labels, pad_token_label_id):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter(log_dir=args.log_dir)
# check the size of the two relative datasets, expand train_dataset with src_probs
assert len(train_dataset) == src_probs.size(0)
train_dataset.tensors += (src_probs,)
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
no_grad = ["embeddings"] + ["layer." + str(layer_i) + "." for layer_i in range(12) if
layer_i < args.freeze_bottom_layer]
logger.info(" The frozen parameters are:")
for n, p in model.named_parameters():
p.requires_grad = False if any(nd in n for nd in no_grad) else True
if not p.requires_grad:
logger.info(" %s", n)
optimizer_grouped_parameters = [
{"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": args.weight_decay},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
# scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=int(t_total*args.warmup_ratio), t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=args.gpu_ids)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" GPU IDs for training: %s", " ".join([str(id) for id in args.gpu_ids]))
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
best_score = 0.0
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
tr_loss_KD, logging_loss_KD = 0.0, 0.0
model.zero_grad()
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
random_name_list = random.sample(list(range(100)),args.num_train_epochs)
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
for epoch_i in range(args.num_train_epochs):
train_dataset_en = load_and_cache_examples_noen(args, str(random_name_list[epoch_i]), args.mmd_en_data_dir, tokenizer, labels, pad_token_label_id, mode="train")
tea_en_cls = get_cls(args, train_dataset_en, model_class, src_lang=args.src_langs[0])
assert len(train_dataset_en) == tea_en_cls.size(0)
train_dataset_en.tensors += (tea_en_cls,)
train_sampler_cls = RandomSampler(train_dataset_en) if args.local_rank == -1 else DistributedSampler(train_dataset_en)
train_dataloader_cls = DataLoader(train_dataset_en, sampler=train_sampler_cls, batch_size=args.train_batch_size)
for step, batch_2 in enumerate(zip(train_dataloader,cycle(train_dataloader_cls))):
batch = batch_2[0]
batch_cls = batch_2[1]
model.train()
# batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0].to(args.device),
"attention_mask": batch[1].to(args.device),
"token_type_ids": batch[2].to(args.device) if args.model_type in ["bert", "xlnet"] else None,
# XLM and RoBERTa don"t use segment_ids
"labels": batch[3].to(args.device),
"src_probs": batch[4],
"input_ids_other": batch_cls[0].to(args.device),
"attention_mask_other": batch_cls[1].to(args.device),
"token_type_ids_other": batch_cls[2].to(args.device) if args.model_type in ["bert", "xlnet"] else None,
"tea_cls_en": batch_cls[4]} # activate the KD loss
outputs = model(**inputs)
# loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
loss_KD, loss = outputs[:2]
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
loss_KD = loss_KD.mean()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss_KD = loss_KD / args.gradient_accumulation_steps
if args.fp16:
# with amp.scale_loss(loss, optimizer) as scaled_loss:
# scaled_loss.backward()
with amp.scale_loss(loss_KD, optimizer) as scaled_loss:
scaled_loss.backward()
else:
# loss.backward()
loss_KD.backward()
tr_loss += loss.item()
tr_loss_KD += loss_KD.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scheduler.step() # Update learning rate schedule
optimizer.step()
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
logger.info("===== evaluate_during_training =====")
results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev")
if results["f1"] > best_score:
logger.info("results['f1']={} > best_score={}".format(results["f1"], best_score))
best_score = results["f1"]
# Save the best model checkpoint
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
logger.info("Saving the best model checkpoint to %s", args.output_dir)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
logger.info("Epoch: {}\t global_step: {}\t eval_{}: {}".format(epoch_i,
global_step, key, value))
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
tb_writer.add_scalar("loss_KD", (tr_loss_KD - logging_loss_KD) / args.logging_steps, global_step)
logger.info(
"Epoch: {}\t global_step: {}\t learning rate: {:.8}\t loss: {:.4f}\t loss_KD: {:.4f}".format(
epoch_i, global_step, scheduler.get_lr()[0],
(tr_loss - logging_loss) / args.logging_steps,
(tr_loss_KD - logging_loss_KD) / args.logging_steps))
logging_loss = tr_loss
logging_loss_KD = tr_loss_KD
# if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# # Save model checkpoint
# output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
# if not os.path.exists(output_dir):
# os.makedirs(output_dir)
# model_to_save = model.module if hasattr(model,
# "module") else model # Take care of distributed/parallel training
# model_to_save.save_pretrained(output_dir)
# torch.save(args, os.path.join(output_dir, "training_args.bin"))
# logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
break
if args.max_steps > 0 and global_step > args.max_steps:
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss_KD / global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""):
eval_dataset = load_and_cache_examples(args, tokenizer, args.data_dir, labels, pad_token_label_id, mode=mode)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation %s *****", prefix)
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
model.eval()
for batch in eval_dataloader:
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2] if args.model_type in ["bert", "xlnet"] else None,
# XLM and RoBERTa don"t use segment_ids
"labels": batch[3]}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = np.argmax(preds, axis=2)
label_map = {i: label for i, label in enumerate(labels)}
out_label_list = [[] for _ in range(out_label_ids.shape[0])]
preds_list = [[] for _ in range(out_label_ids.shape[0])]
for i in range(out_label_ids.shape[0]):
for j in range(out_label_ids.shape[1]):
if out_label_ids[i, j] != pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]])
preds_list[i].append(label_map[preds[i][j]])
results = {
"loss": eval_loss,
"precision": precision_score(out_label_list, preds_list),
"recall": recall_score(out_label_list, preds_list),
"f1": f1_score(out_label_list, preds_list)
}
logger.info("***** Eval results %s *****", prefix)
for key in sorted(results.keys()):
logger.info(" %s = %s", key, str(results[key]))
return results, preds_list
def load_and_cache_examples(args, tokenizer, used_data, labels, pad_token_label_id, mode):
if args.local_rank not in [-1, 0] and not evaluate: # for distributed training
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
cached_features_file = os.path.join(used_data, "cached_{}_{}_{}".format(mode,
list(filter(None,
args.model_name_or_path.split(
"/"))).pop(),
str(args.max_seq_length)))
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", used_data)
examples = read_examples_from_file(used_data, mode)
features = convert_examples_to_features(examples, labels, args.max_seq_length, tokenizer,
cls_token_at_end=bool(args.model_type in ["xlnet"]),
# xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
sep_token=tokenizer.sep_token,
sep_token_extra=bool(args.model_type in ["roberta"]),
# roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
pad_on_left=bool(args.model_type in ["xlnet"]),
# pad on the left for xlnet
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
pad_token_label_id=pad_token_label_id
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
if args.unlabeled_data_ratio < 1.0:
logger.info("==> len of features: {}. data ratio: {}".format(len(features), args.unlabeled_data_ratio))
features = random.sample(features, int(len(features) * args.unlabeled_data_ratio))
logger.info(" len of features: {}".format(len(features)))
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
return dataset
def load_and_cache_examples_noen(args, filenumber, used_data, tokenizer, labels, pad_token_label_id, mode):
if args.local_rank not in [-1, 0] and not evaluate: # for distributed training
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
cached_features_file = os.path.join(used_data, "cached_{}_{}_{}_{}".format(mode,filenumber,
list(filter(None,
args.model_name_or_path.split(
"/"))).pop(),
str(args.max_seq_length)))
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", used_data)
examples = read_examples_from_file_random(used_data, mode, filenumber)
features = convert_examples_to_features(examples, labels, args.max_seq_length, tokenizer,
cls_token_at_end=bool(args.model_type in ["xlnet"]),
# xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
sep_token=tokenizer.sep_token,
sep_token_extra=bool(args.model_type in ["roberta"]),
# roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
pad_on_left=bool(args.model_type in ["xlnet"]),
# pad on the left for xlnet
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
pad_token_label_id=pad_token_label_id
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
if args.unlabeled_data_ratio < 1.0:
logger.info("==> len of features: {}. data ratio: {}".format(len(features), args.unlabeled_data_ratio))
features = random.sample(features, int(len(features) * args.unlabeled_data_ratio))
logger.info(" len of features: {}".format(len(features)))
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
return dataset
def get_src_probs(args, dataset, model_class, src_lang):
""" without softmax.
preds: dataset_len x seq_len x label_len
"""
# load src model
src_model_path = os.path.join(args.src_model_dir, "{}{}".format(args.src_model_dir_prefix, src_lang))
src_model = model_class.from_pretrained(src_model_path)
src_model.to(args.device)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# compute logits for the dataset using the model!
logger.info("***** Compute logits for [%s] dataset using the model [%s] *****", os.path.basename(args.data_dir), src_model_path)
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
# eval_loss = 0.0
# nb_eval_steps = 0
preds = None
src_model.eval()
for batch in eval_dataloader:
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2] if args.model_type in ["bert", "xlnet"] else None,
# XLM and RoBERTa don"t use segment_ids
"labels": None} #batch[3]}
outputs = src_model(**inputs)
logits = outputs[0]
# tmp_eval_loss, logits = outputs[:2]
# eval_loss += tmp_eval_loss.item()
# nb_eval_steps += 1
preds = logits.detach() if preds is None else torch.cat((preds, logits.detach()), dim=0) # dataset_len x max_seq_len x label_len
# eval_loss = eval_loss / nb_eval_steps
preds = torch.nn.functional.softmax(preds, dim=-1)
return preds #, eval_loss
def get_cls(args, dataset, model_class, src_lang):
""" return cls_en
"""
# load src model
src_model_path = os.path.join(args.src_model_dir, "{}{}".format(args.src_model_dir_prefix, src_lang))
src_model = model_class.from_pretrained(src_model_path)
src_model.to(args.device)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# compute logits for the dataset using the model!
logger.info("***** Compute cls for [%s] dataset using the model [%s] *****", os.path.basename(args.mmd_en_data_dir), src_model_path)
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
# eval_loss = 0.0
# nb_eval_steps = 0
preds = None
src_model.eval()
for batch in eval_dataloader:
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2] if args.model_type in ["bert", "xlnet"] else None,
# XLM and RoBERTa don"t use segment_ids
"labels": None} #batch[3]}
outputs = src_model(**inputs)
logits = outputs[2][-1][:,0]
# tmp_eval_loss, logits = outputs[:2]
# eval_loss += tmp_eval_loss.item()
# nb_eval_steps += 1
preds = logits.detach() if preds is None else torch.cat((preds, logits.detach()), dim=0) # dataset_len x label_len
return preds #, eval_loss
def get_src_probs_layers(args, dataset, model_class, src_lang):
""" without softmax.
preds: dataset_len x seq_len x label_len
"""
# load src model
src_model_path = os.path.join(args.src_model_dir, "{}{}".format(args.src_model_dir_prefix, src_lang))
src_model = model_class.from_pretrained(src_model_path)
src_model.to(args.device)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# compute logits for the dataset using the model!
logger.info("***** Compute logits for [%s] dataset using the model [%s] *****", os.path.basename(args.data_dir), src_model_path)
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
# eval_loss = 0.0
# nb_eval_steps = 0
preds = None
final_probs = None
all_preds = [None for i in range(9)]
src_model.eval()
for batch in eval_dataloader:
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2] if args.model_type in ["bert", "xlnet"] else None,
# XLM and RoBERTa don"t use segment_ids
"labels": None} #batch[3]}
outputs = src_model(**inputs)
logits = outputs[0]
logits_layers = outputs[1]
all_logits = [None for i in range(9)]
for i in range(8):
all_logits[i] = logits_layers[i]
all_logits[8] = logits
# tmp_eval_loss, logits = outputs[:2]
# eval_loss += tmp_eval_loss.item()
# nb_eval_steps += 1
# preds = logits.detach() if preds is None else torch.cat((preds, logits.detach()), dim=0) # dataset_len x max_seq_len x label_len
for i in range(9):
all_preds[i] = all_logits[i].detach() if all_preds[i] is None else torch.cat((all_preds[i], all_logits[i].detach()), dim=0)
# eval_loss = eval_loss / nb_eval_steps
for i in range(9):
all_preds[i] = torch.nn.functional.softmax(all_preds[i], dim=-1).unsqueeze(0)
final_probs = all_preds[i] if final_probs is None else torch.cat((final_probs,all_preds[i]),dim=0)
# preds = torch.nn.functional.softmax(preds, dim=-1)
final_probs = final_probs.transpose(0,1)
print("src_probs done", final_probs.shape)
# return preds #, eval_loss
return final_probs
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default="./data/ner/conll/debug", type=str, # required=True,
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.")
parser.add_argument("--mmd_data_dir", default="", type=str, # required=True,
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.")
parser.add_argument("--mmd_en_data_dir", default="", type=str, # required=True,
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.")
parser.add_argument("--output_dir", default="conll-model/test", type=str, # required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--src_model_dir", default="conll-model/", type=str,
help="path to load teacher models")
parser.add_argument("--src_model_dir_prefix", default="mono-src-", type=str,
help="prefix of the teacher model dir (to indicate the model type)")
parser.add_argument("--src_langs", type=str, nargs="+", default="en",
help="source languages used for multi-teacher models")
parser.add_argument("--unlabeled_data_ratio", type=float, default=1.0,
help="Ratio of the training data to use.")
## Other parameters
parser.add_argument("--model_type", default='bert', type=str, # required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default='bert-base-multilingual-cased', type=str, # required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--bert_path", default='./bert-base-multilingual-cased', type=str, # required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--labels", default="./data/ner/conll/labels.txt", type=str,
help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--do_train", action="store_true",
help="Whether to run training.")
parser.add_argument("--do_KD", action="store_true",
help="Whether to train with knowledge distillation.")
parser.add_argument("--hard_label", action="store_true")
parser.add_argument("--do_predict", action="store_true",
help="Whether to run predictions on the test set.")
parser.add_argument("--evaluate_during_training", action="store_true",
help="Whether to run evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action="store_true",
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=32, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=32, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=2e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--freeze_bottom_layer", default=3, type=int,
help="Freeze the bottom n layers of the model during fine-tuning.")
parser.add_argument("--num_train_epochs", default=10, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--warmup_ratio", default=0.1, type=float,
help="Linear warmup over warmup_ratio.")
parser.add_argument("--logging_steps", type=int, default=20,
help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=20000,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action="store_true",
help="Avoid using CUDA when available")
parser.add_argument("--overwrite_output_dir", action="store_true",
help="Overwrite the content of the output directory")
parser.add_argument("--overwrite_cache", action="store_true",
help="Overwrite the cached training and evaluation sets")
parser.add_argument("--seed", type=int, default=667,
help="random seed for initialization")
parser.add_argument("--gpu_ids", type=int, nargs="+", default=0,
help="ids of the gpus to use")
parser.add_argument("--fp16", action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument("--fp16_opt_level", type=str, default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
args = parser.parse_args()
# Check output_dir
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and os.path.exists(os.path.join(args.output_dir, "pytorch_model.bin")) and os.path.basename(args.output_dir) != "test":
raise ValueError("Train: Output directory already exists and is not empty.")
if os.path.exists(args.output_dir) and args.do_predict:
is_done = False
for name in os.listdir(args.output_dir): # result file: "test_results-TIME-LANGUAGE"
if "test_results" in name and (os.path.basename(args.data_dir) + ".txt") in name:
is_done = True
break
if is_done:
raise ValueError("Predict: Output directory ({}) already exists and is not empty.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
args.n_gpu = len(args.gpu_ids) # torch.cuda.device_count()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_ids[0])
# os.environ['CUDA_VISIBLE_DEVICES'] = "0,1,2,3,4,5,6"
device = torch.device("cuda")
# device = torch.device("cpu") if (args.n_gpu == 0 or args.no_cuda) else torch.device(
# "cuda:{}".format(args.gpu_ids[0]))
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.log_dir = os.path.join(args.output_dir, "logs")
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
formatter = logging.Formatter('%(asctime)s %(levelname)s: - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
log_name = "log-{}".format(time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()))
if args.do_train:
log_name += "-train"
if args.do_predict:
log_name += "-predict"
log_name += "-{}".format("_".join(args.src_langs))
log_name += "-{}.txt".format(os.path.basename(args.data_dir))
fh = logging.FileHandler(os.path.join(args.log_dir, log_name))
fh.setLevel(logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
fh.setFormatter(formatter)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Prepare CONLL-2003 task
labels = get_labels(args.labels)
num_labels = len(labels)
# Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
pad_token_label_id = CrossEntropyLoss().ignore_index # -100 here
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
logger.info("Training/evaluation parameters %s", args)
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
# Training
if args.do_train:
# load target model
# config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels)
# tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
# model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config)
config = config_class.from_pretrained(args.config_name if args.config_name else args.bert_path, num_labels=num_labels, output_hidden_states=True)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.bert_path, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.bert_path, from_tf=bool(".ckpt" in args.bert_path), config=config)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
# prepare target training plain text
train_dataset = load_and_cache_examples(args, tokenizer, args.data_dir, labels, pad_token_label_id, mode="train")
if args.do_KD:
logger.info("********** scheme: training with KD **********")
# compute probs from source models
w = 1.0 / len(args.src_langs)
weight_probs = {l: w for l in args.src_langs}
src_probs = None
for lang in args.src_langs:
src_probs = get_src_probs_layers(args, train_dataset, model_class, src_lang=lang)
# Train!
if args.hard_label:
hard_labels = torch.argmax(src_probs, dim=-1, keepdim=False)
train_dataset.tensors += (hard_labels,)
global_step, tr_loss = train(args, model, train_dataset, tokenizer, labels, pad_token_label_id)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
else:
global_step, tr_loss_KD, tr_loss = train_KD(args, model, train_dataset, src_probs, tokenizer, labels, pad_token_label_id)
logger.info(" global_step = %s, average KD loss = %s, average loss = %s", global_step, tr_loss_KD, tr_loss)
else:
logger.info("********** scheme: training without KD **********")
global_step, tr_loss = train(args, model, train_dataset, tokenizer, labels, pad_token_label_id)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
# if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# # Create output directory if needed
# if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
# os.makedirs(args.output_dir)
# logger.info("Saving model checkpoint to %s", args.output_dir)
# # Save a trained model, configuration and tokenizer using `save_pretrained()`.
# # They can then be reloaded using `from_pretrained()`
# model_to_save = model.module if hasattr(model,
# "module") else model # Take care of distributed/parallel training
# model_to_save.save_pretrained(args.output_dir)
# tokenizer.save_pretrained(args.output_dir)
# # Good practice: save your training arguments together with the trained model
# torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
if args.do_predict and args.local_rank in [-1, 0]: