-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
148 lines (115 loc) · 4.02 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#! /usr/bin/env python
#
# Heavily based off of
# https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
import sys
import pathlib
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
import torchvision
import torchvision.transforms as transforms
from PIL import Image
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
PATH = pathlib.Path(__file__).parent.joinpath("weight.pt")
CLASSES = [str(x) for x in range(0, 10)]
BATCH_SIZE = 4
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
]
)
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def train() -> Net:
torch.manual_seed(0)
net = Net()
net.train()
net.to(DEVICE)
trainset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform
)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4
)
criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(net.parameters(), lr=0.001)
for epoch in range(1, 3):
running_loss = 0.0
for i, data in enumerate(trainloader, 1):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(DEVICE), data[1].to(DEVICE)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 0:
print(f"[{epoch}, {i:5d}] loss: {running_loss / 2000:.3f}")
running_loss = 0.0
return net
def test(net: Net):
net.eval()
testset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform
)
testloader = torch.utils.data.DataLoader(
testset, batch_size=BATCH_SIZE, shuffle=False, num_workers=4
)
correct_pred = {classname: 0 for classname in CLASSES}
total_pred = {classname: 0 for classname in CLASSES}
with torch.no_grad():
for data in testloader:
images, labels = data[0].to(DEVICE), data[1].to(DEVICE)
outputs = net(images)
_, predictions = torch.max(outputs, 1)
for label, prediction in zip(labels, predictions):
if label == prediction:
correct_pred[CLASSES[label]] += 1
total_pred[CLASSES[label]] += 1
for classname, correct_count in correct_pred.items():
accuracy = 100 * float(correct_count) / total_pred[classname]
print(f"Accuracy for class: {classname:5s} is {accuracy:.1f} %")
def predict(net: Net, image: Image) -> str:
with torch.no_grad():
image = transform(image).to(DEVICE).unsqueeze(0)
outputs = net(image)
_, predictions = torch.max(outputs, 1)
return CLASSES[predictions[0]]
def load_saved_model() -> Net:
net = Net()
net.load_state_dict(torch.load(PATH))
net.to(DEVICE)
net.eval()
return net
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Invalid arguments, must be one of 'train', 'test'")
elif sys.argv[1] == "train":
net = train()
torch.save(net.state_dict(), PATH)
print(f"Finished training model, saved to {PATH}")
elif sys.argv[1] == "test":
net = load_saved_model()
test(net)
else:
print("Invalid argument, must be one of 'train', 'test'")