-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
51 lines (43 loc) · 1.57 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import streamlit as st
import pickle
import requests
movies = pickle.load(open("movies_list.pkl", 'rb'))
similarity = pickle.load(open("similarity.pkl", 'rb'))
movies_list=movies['title'].values
st.header("Movie Recommender System")
selectvalue=st.selectbox("Select movie from dropdown", movies_list)
def fetch_poster(movie_id):
url = "https://api.themoviedb.org/3/movie/{}?api_key=c7ec19ffdd3279641fb606d19ceb9bb1&language=en-US".format(movie_id)
data=requests.get(url)
data=data.json()
poster_path = data['poster_path']
full_path = "https://image.tmdb.org/t/p/w500/"+poster_path
return full_path
def recommend(movie):
index=movies[movies['title']==movie].index[0]
distance = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda vector:vector[1])
recommend_movie=[]
recommend_poster=[]
for i in distance[1:6]:
movies_id=movies.iloc[i[0]].id
recommend_movie.append(movies.iloc[i[0]].title)
recommend_poster.append(fetch_poster(movies_id))
return recommend_movie, recommend_poster
if st.button("Show Recommend"):
movie_name, movie_poster = recommend(selectvalue)
col1,col2,col3,col4,col5=st.columns(5)
with col1:
st.text(movie_name[0])
st.image(movie_poster[0])
with col2:
st.text(movie_name[1])
st.image(movie_poster[1])
with col3:
st.text(movie_name[2])
st.image(movie_poster[2])
with col4:
st.text(movie_name[3])
st.image(movie_poster[3])
with col5:
st.text(movie_name[4])
st.image(movie_poster[4])