-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dockerfile
38 lines (29 loc) · 1.11 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Use official PyTorch + CUDA base image
# Python 3.10.14 pre-installed
FROM pytorch/pytorch:2.3.0-cuda12.1-cudnn8-runtime
# Set environment variables for non-interactive apt-get install
ENV DEBIAN_FRONTEND=noninteractive
# Install essential system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
curl \
ca-certificates \
git \
wget \
&& apt-get autoremove -y && apt-get clean && rm -rf /var/lib/apt/lists/*
# Set the working directory
WORKDIR /app
# Clone the application repository
RUN git clone https://github.com/MaximilianKr/eval_pipeline.git /app
# Install necessary dependencies into the base Conda environment
RUN conda install -n base -c conda-forge pip \
transformers accelerate tqdm pandas pillow requests urllib3 openai tenacity && \
pip install minicons --no-deps && \
conda clean -a -y
# Ensure the default shell is Bash and source the base environment
SHELL ["/bin/bash", "-c"]
# Expose port 80
EXPOSE 80
# Start a shell by default
CMD ["/bin/bash"]
# Test if container runs properly
# python -c "import torch; print(torch.cuda.is_available())"