-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnalysisGD.py
159 lines (139 loc) · 4.64 KB
/
AnalysisGD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy
from scipy.stats import ortho_group
import numpy as np
from numpy import linalg as LA
import math
import matplotlib.pyplot as plt
import random
# Covariance matrix
dim = 1000
x = ortho_group.rvs(dim)
x_t = np.transpose(x)
d = [[0 for j in range(len(x[0]))] for i in range(len(x))]
for i in range(len(x)):
d[i][i] = math.e ** (-(i + 1))
covariance = np.matmul(d, x_t)
covariance = np.matmul(x, covariance)
eig_vals, eig_vecs = numpy.linalg.eig(covariance)
# Creating data samples
numDataPoints = 1000
mean = [0 for i in range(dim)]
data_list = np.random.multivariate_normal(mean, covariance, numDataPoints)
for i in range(numDataPoints):
original_array = data_list[i]
new_array = [0 for i in range(dim)]
# Decomposing the data vectors into eigenbases and scaling each component by respective eigenvector
for j in range(dim):
eigenval_projection = np.matmul(np.transpose(eig_vecs[j]), data_list[i])
eigenval_scaling = eigenval_projection * eig_vals[j]
eigenvec_scaled = abs(eigenval_scaling) * eig_vecs[j]
new_array = numpy.add(new_array, abs(eigenvec_scaled))
data_list[i] = new_array
# Simple linear regression
# weights
w = np.array([random.uniform(0.1, 1) for i in range(dim)])
b = 0
# learning rate
learningRate = 0.1
# Weight progression
weightProgress = np.array([])
lossList = np.array([])
# Loss function
epochs = 100
count = 0
losslist = np.array([])
while count < epochs:
if count == 0:
weightProgress = w
else:
weightProgress = np.vstack([weightProgress, w])
# Compute loss, L2 norm with target value and predicted
loss = 0
w_gradient = 0
b_gradient = 0
for i in data_list:
prediction = np.dot(w, i) + b
target = np.sum(i)
difference = target - prediction
loss += difference ** 2
# Compute w gradient:
w_gradient = w_gradient + (-2) * w * (np.sum(i) - (prediction))
b_gradient = b_gradient + (-2) * (target - (prediction))
losslist = np.append(losslist, loss)
w_gradient = w_gradient / len(data_list)
b_gradient = b_gradient / len(data_list)
lossList = np.append(lossList, loss)
# Update Weights
w = w - learningRate * w_gradient
b = b - learningRate * b_gradient
count += 1
print(losslist)
# Eigenvectors of covariance matrix of data
datalistT = np.transpose(data_list)
dataCovar = np.matmul(datalistT, data_list)
w, v = LA.eig(dataCovar)
# magnitude of eigenvalues
w2 = [0 for i in range(len(w))]
for i in range(len(w)):
eigenval = abs(w[i])
w2[i] = eigenval
w = w2
w, v = LA.eig(covariance)
projectionList = np.array([])
for i in range(len(weightProgress)):
weights = weightProgress[i]
projection = np.array([])
for j in range(len(v)):
weightsT = np.transpose(weights / np.linalg.norm(weights))
val = np.matmul(v[j], weightsT)
val = abs(val)
projection = np.append(projection, val)
if i == 0:
projectionList = projection
else:
projectionList = np.vstack([projectionList, projection])
x_axis = np.array([])
eigen_y_axis_1 = np.array([])
eigen_y_axis_2 = np.array([])
eigen_y_axis_3 = np.array([])
eigen_y_axis_4 = np.array([])
eigen_y_axis_5 = np.array([])
eigen_y_axis_10 = np.array([])
for i in range(dim):
eigen_y_axis_1 = np.append(eigen_y_axis_1, projectionList[0][i])
eigen_y_axis_2 = np.append(eigen_y_axis_2, projectionList[1][i])
eigen_y_axis_3 = np.append(eigen_y_axis_3, projectionList[2][i])
eigen_y_axis_4 = np.append(eigen_y_axis_4, projectionList[3][i])
eigen_y_axis_5 = np.append(eigen_y_axis_5, projectionList[4][i])
eigen_y_axis_10 = np.append(eigen_y_axis_10, projectionList[9][i])
x_axis = np.append(x_axis, i)
plt.plot(x_axis, eigen_y_axis_1)
plt.xlabel("ith Eigen Value")
plt.ylabel("Projection Value")
plt.title("Weights projected onto Eigenvectors, Epoch 1")
plt.show()
plt.plot(x_axis, eigen_y_axis_2)
plt.xlabel("ith Eigen Value")
plt.ylabel("Projection Value")
plt.title("Weights projected onto Eigenvectors, Epoch 2")
plt.show()
plt.plot(x_axis, eigen_y_axis_3)
plt.xlabel("ith Eigen Value")
plt.ylabel("Projection Value")
plt.title("Weights projected onto Eigenvectors, Epoch 3")
plt.show()
plt.plot(x_axis, eigen_y_axis_4)
plt.xlabel("ith Eigen Value")
plt.ylabel("Projection Value")
plt.title("Weights projected onto Eigenvectors, Epoch 4")
plt.show()
plt.plot(x_axis, eigen_y_axis_5)
plt.xlabel("ith Eigen Value")
plt.ylabel("Projection Value")
plt.title("Weights projected onto Eigenvectors, Epoch 5")
plt.show()
plt.plot(x_axis, eigen_y_axis_10)
plt.xlabel("ith Eigen Value")
plt.ylabel("Projection Value")
plt.title("Weights projected onto Eigenvectors, Epoch 10")
plt.show()