forked from ValentinaUn/Fast-permutation-entropy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPE.m
103 lines (101 loc) · 4.99 KB
/
PE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
function outdata = PE( indata, delay, order, windowSize )
% @brief PE efficiently [1] computes values of permutation entropy [2] in
% maximally overlapping sliding windows
%
% INPUT
% - indata - considered time series
% - delay - delay between points in ordinal patterns (delay = 1 means successive points)
% - order - order of the ordinal patterns (order+1 - number of points in ordinal patterns)
% - windowSize - size of sliding window
% OUTPUT
% - outdata - values of normalised permutation entropy as defined in [2]
%
% REFERENCES
% [1] Unakafova, V.A., Keller, K., 2013. Efficiently measuring complexity
% on the basis of real-world data. Entropy, 15(10), 4392-4415.
% [2] Bandt C., Pompe B., 2002. Permutation entropy: a natural complexity
% measure for time series. Physical review letters, APS
%
% @author Valentina Unakafova
% @date 10.11.2017
% @email UnakafovaValentina(at)gmail.com
load( ['table' num2str( order ) '.mat'] ); % the precomputed table
patternsTable = eval( ['table' num2str( order )] );
nPoints = numel( indata ); % length of the time series
opOrder1 = order + 1;
orderDelay = order*delay;
nPatterns = factorial( opOrder1 ); % amount of ordinal patterns
patternsDistribution = zeros( 1, nPatterns ); % distribution of ordinal patterns
outdata = zeros( 1, nPoints ); % values of permutation entropy
inversionNumbers = zeros( 1, order ); % inversion numbers of ordinal pattern (i1,i2,...,id)
prevOP = zeros( 1, delay ); % previous ordinal patterns for 1:opDelay
ordinalPatternsInWindow = zeros( 1, windowSize ); % ordinal patterns in the window
ancNum = nPatterns./factorial( 2:opOrder1 ); % ancillary numbers
peTable( 1:windowSize ) = -( 1:windowSize ).*log( 1:windowSize ); % table of precomputed values
peTable( 2:windowSize ) = ( peTable( 2:windowSize ) - peTable( 1:windowSize - 1 ) )./windowSize;
for iTau = 1:delay
cnt = iTau;
inversionNumbers( 1 ) = ( indata( orderDelay + iTau - delay ) >= indata( orderDelay + iTau ) );
for j = 2:order
inversionNumbers( j ) = sum( indata( ( order - j )*delay + iTau ) >= ...
indata( ( opOrder1 - j )*delay + iTau:delay:orderDelay + iTau ) );
end
ordinalPatternsInWindow( cnt ) = sum( inversionNumbers.*ancNum ); % first ordinal patterns
patternsDistribution( ordinalPatternsInWindow( cnt )+ 1 ) = ...
patternsDistribution( ordinalPatternsInWindow( cnt ) + 1 ) + 1;
for j = orderDelay + delay + iTau:delay:windowSize + orderDelay % loop for the first window
cnt = cnt + delay;
posL = 1; % the position of the next point
for i = j - orderDelay:delay:j - delay
if( indata( i ) >= indata( j ) )
posL = posL + 1;
end
end
ordinalPatternsInWindow( cnt ) = ...
patternsTable( ordinalPatternsInWindow( cnt - delay )*opOrder1 + posL );
patternsDistribution( ordinalPatternsInWindow( cnt ) + 1 ) = ...
patternsDistribution( ordinalPatternsInWindow( cnt ) + 1 ) + 1;
end
prevOP( iTau ) = ordinalPatternsInWindow( cnt );
end
ordDistNorm = patternsDistribution/windowSize;
tempSum = 0;
for iPattern = 1:nPatterns
if ( ordDistNorm( iPattern ) ~= 0 )
tempSum = tempSum - ordDistNorm( iPattern )*log( ordDistNorm( iPattern ) );
end
end
outdata( windowSize + delay*order ) = tempSum;
iTau = mod( windowSize, delay ) + 1; % current shift 1:delay
patternPosition = 1; % position of the current pattern in the window
for t = windowSize + delay*order + 1:nPoints % loop over all points
posL = 1; % the position of the next point
for j = t-orderDelay:delay:t-delay
if( indata( j ) >= indata( t ) )
posL = posL + 1;
end
end
nNew = patternsTable( prevOP( iTau )*opOrder1 + posL ); % incoming ordinal pattern
nOut = ordinalPatternsInWindow( patternPosition ); % outcoming ordinal pattern
prevOP( iTau ) = nNew;
ordinalPatternsInWindow( patternPosition ) = nNew;
nNew = nNew + 1;
nOut = nOut + 1;
if ( nNew ~= nOut ) % update the distribution of ordinal patterns
patternsDistribution( nNew ) = patternsDistribution( nNew ) + 1; % incoming ordinal pattern
patternsDistribution( nOut ) = patternsDistribution( nOut ) - 1; % outcoming ordinal pattern
outdata( t ) = outdata( t - 1 ) + ( peTable( patternsDistribution( nNew ) ) - ...
peTable( patternsDistribution( nOut ) + 1 ) );
else
outdata( t ) = outdata( t - 1 );
end
iTau = iTau + 1;
patternPosition = patternPosition + 1;
if ( iTau > delay )
iTau = 1;
end
if ( patternPosition > windowSize )
patternPosition = 1;
end
end
outdata = outdata( windowSize + delay*order:end )/log( factorial( order + 1 ) );