-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatching.py
207 lines (161 loc) · 7.27 KB
/
matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
from sklearn.metrics import pairwise_distances
from ot import unif
from ot.gromov import entropic_gromov_wasserstein
from ot.bregman import sinkhorn
from ot.unbalanced import sinkhorn_unbalanced
from scipy.optimize import minimize
from cvxopt.solvers import sdp
from cvxopt import matrix as cvxmat
try: import matlab.engine
except ModuleNotFoundError: print("Warning: Matlab module not found, GWC_cplex and GWC_sdpnal not available")
####################
# Matching methods #
####################
def SinkhornGromovWasserstein(D1=None, D2=None, prms={}): #epsilon=5e-4, tol=1e-9, max_iter=1000):
n1, n2 = D1.shape[0], D2.shape[0]
d1, d2 = unif(n1), unif(n2)
gamma = entropic_gromov_wasserstein(D1, D2, d1, d2, **prms) #"square_loss", epsilon=epsilon, max_iter=max_iter, tol=tol)
mappings = [np.argmax(gamma, axis=1), np.argmax(gamma, axis=0)]
return mappings
def SinkhornWasserstein(X1=None, X2=None, X12=None, prms={}): #metric="euclidean", epsilon=5e-4, tol=1e-09, max_iter=1000):
pprms = {k:v for k,v in prms.items()}
if X12 is None:
n1, n2 = X1.shape[0], X2.shape[0]
metric = pprms.pop('metric')
else: n1, n2 = X12.shape[0], X12.shape[1]
cost = X12 if X12 is not None else pairwise_distances(X1, X2, metric=metric)
gamma = sinkhorn(a=(1/n1)*np.ones(n1), b=(1/n2)*np.ones(n2), M=cost, **pprms)
mappings = [np.argmax(gamma, axis=1), np.argmax(gamma, axis=0)]
return mappings
def SinkhornUnbalancedWasserstein(X1=None, X2=None, X12=None, prms={}): #metric="euclidean", epsilon=5e-4, delta=5e-4, tol=1e-09, max_iter=1000):
pprms = {k:v for k,v in prms.items()}
if X12 is None:
n1, n2 = X1.shape[0], X2.shape[0]
metric = pprms.pop('metric')
else: n1, n2 = X12.shape[0], X12.shape[1]
cost = X12 if X12 is not None else pairwise_distances(X1, X2, metric=metric)
gamma = sinkhorn_unbalanced(a=(1/n1)*np.ones(n1), b=(1/n2)*np.ones(n2), M=cost, **pprms)
mappings = [np.argmax(gamma, axis=1), np.argmax(gamma, axis=0)]
return mappings
def SinkhornWassersteinGromovWasserstein(X1=None, X2=None, X12=None, D1=None, D2=None, prms={}): #metric="euclidean", alpha=.5, epsilon=5e-4, tol=1e-9, max_iter=1000):
pprms = {k:v for k,v in prms.items()}
if X12 is None: metric = pprms.pop('metric')
alpha = pprms.pop('alpha')
Z = X12 if X12 is not None else pairwise_distances(X1, X2, metric=metric)
n1, n2 = D1.shape[0], D2.shape[0]
p, q = (1/n1)*np.ones(n1), (1/n2)*np.ones(n2)
gamma = np.outer(p, q)
cpt, err = 0, 1.
if alpha == 1: gamma = sinkhorn(p, q, Z, **pprms)
else:
while (err > tol and cpt < max_iter):
gamma_prev = gamma
tens = np.dot(D1, gamma).dot(D2.T)
tens_all = (1-alpha) * tens + alpha * Z
gamma = sinkhorn(p, q, tens_all, **pprms)
if cpt % 10 == 0: err = np.linalg.norm(gamma - gamma_prev)
mappings = [np.argmax(gamma, axis=1), np.argmax(gamma, axis=0)]
return mappings
def lagrangian(x, Gamma, A, b, sigma_m, lambda_m):
U = np.matmul(A,x)-b
return np.matmul(x.T,np.matmul(Gamma,x)) - np.matmul(lambda_m.T,U) + .5*sigma_m*np.matmul(U.T,U)
def lagrangian_grad(x, Gamma, A, b, sigma_m, lambda_m):
U = np.matmul(A,x)-b
grad = 2*np.matmul(Gamma,x) - np.matmul(A.T,lambda_m) + sigma_m*np.matmul(A.T,U)
return grad
def lagrangian_hess(x, Gamma, A, b, sigma_m, lambda_m):
H = 2*Gamma + sigma_m*np.matmul(A.T,A)
return H
def NonConvexGromovHausdorff(D1=None, D2=None, prms={}): #num_iter=15, sigma_m_0=5., mu=10., method="L-BFGS-B", map_init=None, verbose=False):
num_iter, sigma_m_0, mu, method, map_init, verbose = prms['num_iter'], prms['sigma_m_0'], prms['mu'], prms['method'], prms['map_init'], prms['verbose']
n = D1.shape[0]
assert D2.shape[0] == n
D1 /= D1.max()
D2 /= D2.max()
# Compute distortions
Gamma = np.abs( np.repeat(np.repeat(D1,n,0),n,1) - np.tile(np.tile(D2,n).T,n).T )
# Initialize solution
y = np.ones([n*n])/n if map_init is None else map_init
# Initialize constraints
lambda_m = np.ones([2*n])
sigma_m = sigma_m_0
A = np.concatenate([np.repeat(np.eye(n),n,1), np.tile(np.eye(n),n)], axis=0)
b = np.ones([2*n])
# Initialize feasability, objective and solution
feasabilities = np.zeros([num_iter])
feasabilities[0] = np.linalg.norm( np.matmul(A,y)-b )
objectives = np.zeros([num_iter])
objectives[0] = float(np.matmul(y.T, np.matmul(Gamma,y)))
minimizers = np.zeros([n*n,num_iter])
minimizers[:,0] = np.squeeze(y)
for it in range(1, num_iter):
if verbose: print("iteration " + str(it))
# Update
y = minimize(fun=lagrangian, x0=y, args=(Gamma, A, b, sigma_m, lambda_m), jac=lagrangian_grad, hess=lagrangian_hess, bounds=[(0.,1.) for _ in range(len(y))], method=method)["x"]
# Store values
lambda_m = lambda_m - sigma_m * (np.matmul(A,y)-b)
sigma_m = mu * sigma_m
feasabilities[it] = np.linalg.norm( np.matmul(A,y)-b )
objectives[it] = float(np.matmul(y.T, np.matmul(Gamma,y)))
minimizers[:,it] = np.squeeze(y)
mappings = [np.zeros(n, dtype=np.int32), np.zeros(n, dtype=np.int32)]
for i in range(n): mappings[0][i] = np.argmax(minimizers[i*n:(i+1)*n, num_iter-1])
for i in range(n): mappings[1][i] = np.argmax(minimizers[i::n, num_iter-1])
#gamma = np.reshape(minimizers[:,num_iter-1], [n,n])
#return gamma, mappings
return mappings
def SDPNALConvexGromovHausdorff(D1=None, D2=None, prms={}): #eng, use_birkhoff=False):
eng, use_birkhoff = prms['eng'], prms['use_birkhoff']
n1, n2 = len(D1), len(D2)
assert n1 == n2
D1 /= D1.max()
D2 /= D2.max()
eng.workspace["D1"] = D1.tolist()
eng.workspace["D2"] = D2.tolist()
eng.run("gwCsdpnal.m", nargout=0)
if use_birkhoff:
M = np.array(eng.workspace["maps"]).flatten()
else:
Y = np.array(eng.workspace['X'])
M = Y[:-1,-1]
mappings = [np.zeros(n1, dtype=np.int32), np.zeros(n1, dtype=np.int32)]
for i in range(n1): mappings[0][i] = np.argmax(M[i*n1:(i+1)*n1])
for i in range(n1): mappings[1][i] = np.argmax(M[i::n1])
#gamma = np.reshape(M, [n1, n1])
#return gamma, mappings
return mappings
def CPLEXConvexGromovHausdorff(D1=None, D2=None, prms={}): #eng, maxtime=120):
eng, maxtime = prms['eng'], prms['maxtime']
n1, n2 = len(D1), len(D2)
assert n1 == n2
D1 /= D1.max()
D2 /= D2.max()
eng.workspace["D1"] = D1.tolist()
eng.workspace["D2"] = D2.tolist()
eng.workspace["maxtime"] = maxtime
eng.run("gwCcplex.m", nargout=0)
Y = np.array(eng.workspace['X'])
M = Y[:,-1]
mappings = [np.zeros(n1, dtype=np.int32), np.zeros(n1, dtype=np.int32)]
for i in range(n1): mappings[0][i] = np.argmax(M[i*n1:(i+1)*n1])
for i in range(n1): mappings[1][i] = np.argmax(M[i::n1])
#gamma = np.reshape(M, [n1, n1])
#return gamma, mappings
return mappings
#######################
# Matching parameters #
#######################
def SinkhornWassersteinMedianParameters(X1=None, X2=None, X12=None):
if X12 is not None:
reg = np.quantile(X12,.5)
reg = reg if reg > 0 else 1.
return {'metric': 'euclidean', 'reg': reg, 'max_iter': 1000, "tol": 1e-9}
else:
reg = np.quantile(pairwise_distances(X1, X2, metric='euclidean'),.5)
reg = reg if reg > 0 else 1.
return {'metric': 'euclidean', 'reg': reg, 'max_iter': 1000, "tol": 1e-9}
def SinkhornGromovWassersteinMedianParameters(D1=None, D2=None):
epsilon = np.quantile(np.abs(D1[:40,:40,None,None]-D2[None,None,:40,:40]),.5)
epsilon = epsilon if epsilon > 0 else 1.
return {'epsilon': np.quantile(np.abs(D1[:40,:40,None,None]-D2[None,None,:40,:40]),.5), 'max_iter': 1000, "tol": 1e-9, "loss_fun": 'square_loss'}