-
Notifications
You must be signed in to change notification settings - Fork 1
/
apply_filter.py
347 lines (269 loc) · 12.8 KB
/
apply_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import mediapipe as mp
import cv2
import math
import numpy as np
import faceBlendCommon as fbc
import csv
import os
VISUALIZE_FACE_POINTS = False
filters_config = {
'anonymous':
[{'path': "filters/anonymous.png",
'anno_path': "filters/anonymous_annotations.csv",
'morph': True, 'animated': False, 'has_alpha': True}],
'anime':
[{'path': "filters/anime.png",
'anno_path': "filters/anime_annotations.csv",
'morph': True, 'animated': False, 'has_alpha': True}],
'dog':
[{'path': "filters/dog-ears.png",
'anno_path': "filters/dog-ears_annotations.csv",
'morph': False, 'animated': False, 'has_alpha': True},
{'path': "filters/dog-nose.png",
'anno_path': "filters/dog-nose_annotations.csv",
'morph': False, 'animated': False, 'has_alpha': True}],
'cat':
[{'path': "filters/cat-ears.png",
'anno_path': "filters/cat-ears_annotations.csv",
'morph': False, 'animated': False, 'has_alpha': True},
{'path': "filters/cat-nose.png",
'anno_path': "filters/cat-nose_annotations.csv",
'morph': False, 'animated': False, 'has_alpha': True}],
'jason-joker':
[{'path': "filters/jason-joker.png",
'anno_path': "filters/jason-joker_annotations.csv",
'morph': True, 'animated': False, 'has_alpha': True}],
'gold-crown':
[{'path': "filters/gold-crown.png",
'anno_path': "filters/gold-crown_annotations.csv",
'morph': False, 'animated': False, 'has_alpha': True}],
'flower-crown':
[{'path': "filters/flower-crown.png",
'anno_path': "filters/flower-crown_annotations.csv",
'morph': False, 'animated': False, 'has_alpha': True}],
}
# detect facial landmarks in image
def getLandmarks(img):
mp_face_mesh = mp.solutions.face_mesh
selected_keypoint_indices = [127, 93, 58, 136, 150, 149, 176, 148, 152, 377, 400, 378, 379, 365, 288, 323, 356, 70, 63, 105, 66, 55,
285, 296, 334, 293, 300, 168, 6, 195, 4, 64, 60, 94, 290, 439, 33, 160, 158, 173, 153, 144, 398, 385,
387, 466, 373, 380, 61, 40, 39, 0, 269, 270, 291, 321, 405, 17, 181, 91, 78, 81, 13, 311, 306, 402, 14,
178, 162, 54, 67, 10, 297, 284, 389]
height, width = img.shape[:-1]
with mp_face_mesh.FaceMesh(max_num_faces=1, static_image_mode=True, min_detection_confidence=0.5) as face_mesh:
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
print('Face not detected!!!')
return 0
for face_landmarks in results.multi_face_landmarks:
values = np.array(face_landmarks.landmark)
face_keypnts = np.zeros((len(values), 2))
for idx,value in enumerate(values):
face_keypnts[idx][0] = value.x
face_keypnts[idx][1] = value.y
# Convert normalized points to image coordinates
face_keypnts = face_keypnts * (width, height)
face_keypnts = face_keypnts.astype('int')
relevant_keypnts = []
for i in selected_keypoint_indices:
relevant_keypnts.append(face_keypnts[i])
return relevant_keypnts
return 0
def load_filter_img(img_path, has_alpha):
# Read the image
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
alpha = None
if has_alpha:
b, g, r, alpha = cv2.split(img)
img = cv2.merge((b, g, r))
return img, alpha
def load_landmarks(annotation_file):
with open(annotation_file) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",")
points = {}
for i, row in enumerate(csv_reader):
# skip head or empty line if it's there
try:
x, y = int(row[1]), int(row[2])
points[row[0]] = (x, y)
except ValueError:
continue
return points
def find_convex_hull(points):
hull = []
hullIndex = cv2.convexHull(np.array(list(points.values())), clockwise=False, returnPoints=False)
addPoints = [
[48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], # Outer lips
[60], [61], [62], [63], [64], [65], [66], [67], # Inner lips
[27], [28], [29], [30], [31], [32], [33], [34], [35], # Nose
[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], # Eyes
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26] # Eyebrows
]
hullIndex = np.concatenate((hullIndex, addPoints))
for i in range(0, len(hullIndex)):
hull.append(points[str(hullIndex[i][0])])
return hull, hullIndex
def load_filter(filter_name="dog"):
filters = filters_config[filter_name]
multi_filter_runtime = []
for filter in filters:
temp_dict = {}
img1, img1_alpha = load_filter_img(filter['path'], filter['has_alpha'])
temp_dict['img'] = img1
temp_dict['img_a'] = img1_alpha
points = load_landmarks(filter['anno_path'])
temp_dict['points'] = points
if filter['morph']:
# Find convex hull for delaunay triangulation using the landmark points
hull, hullIndex = find_convex_hull(points)
# Find Delaunay triangulation for convex hull points
sizeImg1 = img1.shape
rect = (0, 0, sizeImg1[1], sizeImg1[0])
dt = fbc.calculateDelaunayTriangles(rect, hull)
temp_dict['hull'] = hull
temp_dict['hullIndex'] = hullIndex
temp_dict['dt'] = dt
if len(dt) == 0:
continue
if filter['animated']:
filter_cap = cv2.VideoCapture(filter['path'])
temp_dict['cap'] = filter_cap
multi_filter_runtime.append(temp_dict)
return filters, multi_filter_runtime
# process input from webcam or video file
cap = cv2.VideoCapture(0)
# Some variables
count = 0
isFirstFrame = True
sigma = 50
iter_filter_keys = iter(filters_config.keys())
filters, multi_filter_runtime = load_filter(next(iter_filter_keys))
CAPTURED_IMAGES_DIR = "images"
os.makedirs(CAPTURED_IMAGES_DIR, exist_ok=True)
# The main loop
while True:
ret, frame = cap.read()
if not ret:
break
else:
points2 = getLandmarks(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# if face is partially detected
if not points2 or (len(points2) != 75):
continue
################ Optical Flow and Stabilization Code #####################
img2Gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if isFirstFrame:
points2Prev = np.array(points2, np.float32)
img2GrayPrev = np.copy(img2Gray)
isFirstFrame = False
lk_params = dict(winSize=(101, 101), maxLevel=15,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 20, 0.001))
points2Next, st, err = cv2.calcOpticalFlowPyrLK(img2GrayPrev, img2Gray, points2Prev,
np.array(points2, np.float32),
**lk_params)
# Final landmark points are a weighted average of detected landmarks and tracked landmarks
for k in range(0, len(points2)):
d = cv2.norm(np.array(points2[k]) - points2Next[k])
alpha = math.exp(-d * d / sigma)
points2[k] = (1 - alpha) * np.array(points2[k]) + alpha * points2Next[k]
points2[k] = fbc.constrainPoint(points2[k], frame.shape[1], frame.shape[0])
points2[k] = (int(points2[k][0]), int(points2[k][1]))
# Update variables for next pass
points2Prev = np.array(points2, np.float32)
img2GrayPrev = img2Gray
################ End of Optical Flow and Stabilization Code ###############
if VISUALIZE_FACE_POINTS:
for idx, point in enumerate(points2):
cv2.circle(frame, point, 2, (255, 0, 0), -1)
cv2.putText(frame, str(idx), point, cv2.FONT_HERSHEY_SIMPLEX, .3, (255, 255, 255), 1)
cv2.imshow("landmarks", frame)
for idx, filter in enumerate(filters):
filter_runtime = multi_filter_runtime[idx]
img1 = filter_runtime['img']
points1 = filter_runtime['points']
img1_alpha = filter_runtime['img_a']
if filter['morph']:
hullIndex = filter_runtime['hullIndex']
dt = filter_runtime['dt']
hull1 = filter_runtime['hull']
# create copy of frame
warped_img = np.copy(frame)
# Find convex hull
hull2 = []
for i in range(0, len(hullIndex)):
hull2.append(points2[hullIndex[i][0]])
mask1 = np.zeros((warped_img.shape[0], warped_img.shape[1]), dtype=np.float32)
mask1 = cv2.merge((mask1, mask1, mask1))
img1_alpha_mask = cv2.merge((img1_alpha, img1_alpha, img1_alpha))
# Warp the triangles
for i in range(0, len(dt)):
t1 = []
t2 = []
for j in range(0, 3):
t1.append(hull1[dt[i][j]])
t2.append(hull2[dt[i][j]])
fbc.warpTriangle(img1, warped_img, t1, t2)
fbc.warpTriangle(img1_alpha_mask, mask1, t1, t2)
# Blur the mask before blending
mask1 = cv2.GaussianBlur(mask1, (3, 3), 10)
mask2 = (255.0, 255.0, 255.0) - mask1
# Perform alpha blending of the two images
temp1 = np.multiply(warped_img, (mask1 * (1.0 / 255)))
temp2 = np.multiply(frame, (mask2 * (1.0 / 255)))
output = temp1 + temp2
else:
dst_points = [points2[int(list(points1.keys())[0])], points2[int(list(points1.keys())[1])]]
tform = fbc.similarityTransform(list(points1.values()), dst_points)
# Apply similarity transform to input image
trans_img = cv2.warpAffine(img1, tform, (frame.shape[1], frame.shape[0]))
trans_alpha = cv2.warpAffine(img1_alpha, tform, (frame.shape[1], frame.shape[0]))
mask1 = cv2.merge((trans_alpha, trans_alpha, trans_alpha))
# Blur the mask before blending
mask1 = cv2.GaussianBlur(mask1, (3, 3), 10)
mask2 = (255.0, 255.0, 255.0) - mask1
# Perform alpha blending of the two images
temp1 = np.multiply(trans_img, (mask1 * (1.0 / 255)))
temp2 = np.multiply(frame, (mask2 * (1.0 / 255)))
output = temp1 + temp2
frame = output = np.uint8(output)
text = "animAR"
font_size = 2.5
font_thickness = 2
font_color = (0, 255, 0) # Green color
font = cv2.FONT_HERSHEY_SCRIPT_COMPLEX
text_size = cv2.getTextSize(text, font, font_size, font_thickness)[0]
text_x = int((frame.shape[1] - text_size[1]) / 2)
text_y = int((frame.shape[2] + text_size[1]) / 2 + 20)
cv2.putText(frame, text, (text_x, text_y), font, font_size, font_color, font_thickness)
cv2.putText(frame, "Press F to change filters", (10, 20), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 0, 0), 1)
cv2.putText(frame, "Press Q to quit", (10, 40), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 0, 0), 1)
cv2.putText(frame, "Press C to capture image", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 0, 0), 1)
cv2.putText(frame, "Press D to download image", (10, 80), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 0, 0), 1)
cv2.imshow("Face Filter", output)
keypressed = cv2.waitKey(1) & 0xFF
if keypressed == 27:
break
# Put next filter if 'f' is pressed
elif keypressed == ord('f'):
try:
filters, multi_filter_runtime = load_filter(next(iter_filter_keys))
except:
iter_filter_keys = iter(filters_config.keys())
filters, multi_filter_runtime = load_filter(next(iter_filter_keys))
elif keypressed == ord('q') or keypressed == ord('Q'):
break
elif keypressed == ord('c') or keypressed == ord('C'):
# Capture and save the image
captured_image_path = os.path.join(CAPTURED_IMAGES_DIR, f"captured_image_{count}.png")
cv2.imwrite(captured_image_path, output)
print(f"Image captured and saved: {captured_image_path}")
elif keypressed == ord('d') or keypressed == ord('D'):
# Download the captured image
if captured_image_path:
cv2.imwrite(captured_image_path, output)
print(f"Image downloaded: {captured_image_path}")
else:
print("No image captured yet.")
count += 1
cap.release()
cv2.destroyAllWindows()