forked from vedderb/bldc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
digital_filter.c
234 lines (206 loc) · 5.12 KB
/
digital_filter.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*
Copyright 2016 Benjamin Vedder [email protected]
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "digital_filter.h"
#include <math.h>
#include <stdint.h>
// Found at http://paulbourke.net/miscellaneous//dft/
void filter_fft(int dir, int m, float *real, float *imag) {
long n,i,i1,j,k,i2,l,l1,l2;
float c1,c2,tx,ty,t1,t2,u1,u2,z;
// Calculate the number of points
n = 1 << m;
// Do the bit reversal
i2 = n >> 1;
j = 0;
for (i=0;i<n-1;i++) {
if (i < j) {
tx = real[i];
ty = imag[i];
real[i] = real[j];
imag[i] = imag[j];
real[j] = tx;
imag[j] = ty;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
// Compute the FFT
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++) {
l1 = l2;
l2 <<= 1;
u1 = 1.0;
u2 = 0.0;
for (j=0;j < l1;j++) {
for (i=j;i < n;i += l2) {
i1 = i + l1;
t1 = u1 * real[i1] - u2 * imag[i1];
t2 = u1 * imag[i1] + u2 * real[i1];
real[i1] = real[i] - t1;
imag[i1] = imag[i] - t2;
real[i] += t1;
imag[i] += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir) {
c2 = -c2;
}
c1 = sqrt((1.0 + c1) / 2.0);
}
// Scaling for reverse transform
if (dir) {
for (i=0;i < n;i++) {
real[i] /= n;
imag[i] /= n;
}
}
}
// Found at http://paulbourke.net/miscellaneous//dft/
void filter_dft(int dir, int len, float *real, float *imag) {
long i,k;
float arg;
float cosarg, sinarg;
if(dir) {
dir = 1;
} else {
dir = -1;
}
float x2[len];
float y2[len];
for (i=0;i < len;i++) {
x2[i] = 0;
y2[i] = 0;
arg = -(float)dir * 2.0 * M_PI * (float)i / (float)len;
for (k=0;k<len;k++) {
cosarg = cosf(k * arg);
sinarg = sinf(k * arg);
x2[i] += (real[k] * cosarg - imag[k] * sinarg);
y2[i] += (real[k] * sinarg + imag[k] * cosarg);
}
}
// Copy the data back
if (dir == 1) {
for (i=0;i<len;i++) {
real[i] = x2[i] / (float)len;
imag[i] = y2[i] / (float)len;
}
} else {
for (i=0;i<len;i++) {
real[i] = x2[i];
imag[i] = y2[i];
}
}
}
void filter_fftshift(float *data, int len) {
for (int i = 0;i < (len / 2);i++) {
float r1 = data[i];
float r2 = data[len/2 + i];
data[i] = r2;
data[len / 2 + i] = r1;
}
}
void filter_hamming(float *data, int len) {
if (len % 2 == 0) {
for (int i = 0;i < (len / 2);i++) {
float val = 0.54 - 0.46 * cosf((2.0 * M_PI * (float)i)/(float)(len - 1));
data[i] *= val;
data[len - i - 1] *= val;
}
} else {
for (int i = 0;i < len;i++) {
data[i] *= 0.54 - 0.46 * cosf((2.0 * M_PI * (float)i)/(float)(len - 1));
}
}
}
void filter_zeroPad(float *data, float *result, int dataLen, int resultLen) {
for (int i = 0;i < resultLen;i++) {
if (i < dataLen) {
result[i] = data[i];
} else {
result[i] = 0;
}
}
}
void filter_create_fir_lowpass(float *filter_vector, float f_break, int bits, int use_hamming) {
int taps = 1 << bits;
float imag[taps];
for(int i = 0;i < taps;i++) {
if (i < (int)((float)taps * f_break)) {
filter_vector[i] = 1;
} else {
filter_vector[i] = 0;
}
imag[i] = 0;
}
// Make filter symmetric
for (int i = 0;i < taps / 2;i++) {
filter_vector[taps - i - 1] = filter_vector[i];
}
filter_fft(1, bits, filter_vector, imag);
filter_fftshift(filter_vector, taps);
if (use_hamming) {
filter_hamming(filter_vector, taps);
}
}
/*
* Run FIR filter iteration.
*
* bits: A power of two representing the length of the filter
* filter: The FIR filter coefficients
* offset: an offset into the vector buffer. Will wrap around when going past
* length while filtering. Useful for keeping a circular buffer with samples
* and avoiding to shift the whole buffer.
*
* returns: The filtered result sample.
*/
float filter_run_fir_iteration(float *vector, float *filter, int bits, uint32_t offset) {
float result = 0;
int size = 1 << bits;
uint32_t cnt_mask = 0xFFFFFFFF >> (32 - bits);
for (int i = 0;i < size;i++) {
result += filter[i] * vector[offset];
offset++;
offset &= cnt_mask;
}
return result;
}
/**
* Add sample to buffer
* @param buffer
* The buffer to add the sample to
* @param sample
* The sample to add
* @param bits
* The length of the buffer in bits
* @param offset
* Pointer to the current offset in the buffer. Will be updated in this call
* and wrapped at the length of this buffer.
*/
void filter_add_sample(float *buffer, float sample, int bits, uint32_t *offset) {
uint32_t cnt_mask = 0xFFFFFFFF >> (32 - bits);
buffer[*offset] = sample;
*offset += 1;
*offset &= cnt_mask;
}