forked from vedderb/bldc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
buffer.c
173 lines (147 loc) · 4.78 KB
/
buffer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
Copyright 2016 Benjamin Vedder [email protected]
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "buffer.h"
#include <math.h>
#include <stdbool.h>
void buffer_append_int16(uint8_t* buffer, int16_t number, int32_t *index) {
buffer[(*index)++] = number >> 8;
buffer[(*index)++] = number;
}
void buffer_append_uint16(uint8_t* buffer, uint16_t number, int32_t *index) {
buffer[(*index)++] = number >> 8;
buffer[(*index)++] = number;
}
void buffer_append_int32(uint8_t* buffer, int32_t number, int32_t *index) {
buffer[(*index)++] = number >> 24;
buffer[(*index)++] = number >> 16;
buffer[(*index)++] = number >> 8;
buffer[(*index)++] = number;
}
void buffer_append_uint32(uint8_t* buffer, uint32_t number, int32_t *index) {
buffer[(*index)++] = number >> 24;
buffer[(*index)++] = number >> 16;
buffer[(*index)++] = number >> 8;
buffer[(*index)++] = number;
}
void buffer_append_float16(uint8_t* buffer, float number, float scale, int32_t *index) {
buffer_append_int16(buffer, (int16_t)(number * scale), index);
}
void buffer_append_float32(uint8_t* buffer, float number, float scale, int32_t *index) {
buffer_append_int32(buffer, (int32_t)(number * scale), index);
}
/*
* See my question:
* http://stackoverflow.com/questions/40416682/portable-way-to-serialize-float-as-32-bit-integer
*
* Regarding the float32_auto functions:
*
* Noticed that frexp and ldexp fit the format of the IEEE float representation, so
* they should be quite fast. They are (more or less) equivalent with the following:
*
* float frexp_slow(float f, int *e) {
* if (f == 0.0) {
* *e = 0;
* return 0.0;
* }
*
* *e = ceilf(log2f(fabsf(f)));
* float res = f / powf(2.0, (float)*e);
*
* if (res >= 1.0) {
* res -= 0.5;
* *e += 1;
* }
*
* if (res <= -1.0) {
* res += 0.5;
* *e += 1;
* }
*
* return res;
* }
*
* float ldexp_slow(float f, int e) {
* return f * powf(2.0, (float)e);
* }
*
* 8388608.0 is 2^23, which scales the result to fit within 23 bits if sig_abs < 1.0.
*
* This should be a relatively fast and efficient way to serialize
* floating point numbers in a fully defined manner.
*/
void buffer_append_float32_auto(uint8_t* buffer, float number, int32_t *index) {
int e = 0;
float sig = frexpf(number, &e);
float sig_abs = fabsf(sig);
uint32_t sig_i = 0;
if (sig_abs >= 0.5) {
sig_i = (uint32_t)((sig_abs - 0.5f) * 2.0f * 8388608.0f);
e += 126;
}
uint32_t res = ((e & 0xFF) << 23) | (sig_i & 0x7FFFFF);
if (sig < 0) {
res |= 1U << 31;
}
buffer_append_uint32(buffer, res, index);
}
int16_t buffer_get_int16(const uint8_t *buffer, int32_t *index) {
int16_t res = ((uint16_t) buffer[*index]) << 8 |
((uint16_t) buffer[*index + 1]);
*index += 2;
return res;
}
uint16_t buffer_get_uint16(const uint8_t *buffer, int32_t *index) {
uint16_t res = ((uint16_t) buffer[*index]) << 8 |
((uint16_t) buffer[*index + 1]);
*index += 2;
return res;
}
int32_t buffer_get_int32(const uint8_t *buffer, int32_t *index) {
int32_t res = ((uint32_t) buffer[*index]) << 24 |
((uint32_t) buffer[*index + 1]) << 16 |
((uint32_t) buffer[*index + 2]) << 8 |
((uint32_t) buffer[*index + 3]);
*index += 4;
return res;
}
uint32_t buffer_get_uint32(const uint8_t *buffer, int32_t *index) {
uint32_t res = ((uint32_t) buffer[*index]) << 24 |
((uint32_t) buffer[*index + 1]) << 16 |
((uint32_t) buffer[*index + 2]) << 8 |
((uint32_t) buffer[*index + 3]);
*index += 4;
return res;
}
float buffer_get_float16(const uint8_t *buffer, float scale, int32_t *index) {
return (float)buffer_get_int16(buffer, index) / scale;
}
float buffer_get_float32(const uint8_t *buffer, float scale, int32_t *index) {
return (float)buffer_get_int32(buffer, index) / scale;
}
float buffer_get_float32_auto(const uint8_t *buffer, int32_t *index) {
uint32_t res = buffer_get_uint32(buffer, index);
int e = (res >> 23) & 0xFF;
uint32_t sig_i = res & 0x7FFFFF;
bool neg = res & (1U << 31);
float sig = 0.0;
if (e != 0 || sig_i != 0) {
sig = (float)sig_i / (8388608.0 * 2.0) + 0.5;
e -= 126;
}
if (neg) {
sig = -sig;
}
return ldexpf(sig, e);
}