-
Notifications
You must be signed in to change notification settings - Fork 1
/
example.yaml
164 lines (146 loc) · 9.09 KB
/
example.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#################################
# Predictions
#################################
Predictions:
# Perturbative order, 0: LO, 1: NLO 2: NNLO
perturbative order: 2
# Initial scale in GeV to be used for the DGLAP evolution of the FFs.
mu0: 1
# Quark thresholds
thresholds: [0, 0, 0, 1.51, 4.92]
# Strong coupling
alphas:
aref: 0.118
Qref: 91.1876
# APFEL++ grid
xgrid:
- [200, 1e-5, 3]
- [100, 1e-1, 3]
- [80, 8e-1, 3]
###################
# Replica settings
###################
#
# Here you can choose how replicas in the unpolarised PDF and FF
# sets are used in the analysis.
# 0: The central replica (mean value) is chosen for both
# unpolarised PDF and FF sets, overwriting the values
# provided below.
# -1: PDF and FF replicas are chosen randomly, overwriting
# the values provided below.
# 1: The values provided below are used to select a particular
# replica in the set.
# If the fit is performed with unfluctuated data ("./Optimise 0"), option 0
# is automatically adopted.
Replica settings: -1
##############
# Positivity
##############
# Here you can select how the positivity constraint is
# implemented.
# false: the positivity bound is imposed with a unpolarised
# PDF replica selected randomly from the set.
# true: the positivity bound is imposed through the central
# replica of the unpolarised PDF set inflated by a
# factor specified in "Multiplicative factor".
Include Std: false
#Multiplicative factor: 5
# List of external sets to be used in the analysis.
# name: is the number of the PDF set as provided in
# the LHAPDF list.
# member: replica member to be used in the analysis.
# This key is overwritten if 'Replica settings'
# is either set to 0 or -1.
Sets:
# Unpolarised PDF set
unpolarised pdfset:
name: NNPDF31_nnlo_pch_as_0118
member: -1 #N>=0 for a specific member (0 for central)
# FF sets
PIplus ffset:
name: MAPFF10NNLOPIp
member: -1
PIminus ffset:
name: MAPFF10NNLOPIm
member: -1
KAplus ffset:
name: MAPFF10NNLOKAp
member: -1
KAminus ffset:
name: MAPFF10NNLOKAm
member: -1
#################################
# Optimiser
#################################
# Parameters of the optimiser managed by ceres-solver
Optimizer:
max_num_iterations: 3000
chi2_tolerance: 3
#################################
# NNAD
#################################
NNAD:
# Initialisation seed
seed: 0
# Flavour map
# Available flavour maps:
# - "separate sbar" (0): sbar, ubar, dbar, g, d, u, s
# - "s=sbar" (1): ubar, dbar, g, u, d, s = sbar.
flavour map: 0
# Architecture
# DO NOT MODIFY THE INPUT
# The output must be consistent with the flavour map:
# - "separate sbar" : 7
# - "s=sbar" : 6
architecture: [1, 10, 7]
#################################
# Data
#################################
Data:
# Seed used for the replica generation and the splitting between
# training and validation (do not use a too large number here in
# order to avoid correlation in the replica generation).
seed: 2
# Minimum number of points below which all points will be included in the training.
# If not provided, Denali sets this number to 10.
minimum training size: 10
# Datasets to be included in the fit along with specific cuts and
# traning fraction. Each single dataset can implement an arbitrary
# number of cuts determined by the name of the appropriate function
# (e.g. xcut) and the allowed range.
sets:
- {name: "COMPASS KA^- A_1^p", file: "COMPASS_A1P_KA_MINUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "COMPASS KA^+ A_1^p", file: "COMPASS_A1P_KA_PLUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "COMPASS PI^- A_1^p", file: "COMPASS_A1P_PI_MINUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "COMPASS PI^+ A_1^p", file: "COMPASS_A1P_PI_PLUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "COMPASS KA^- A_1^d", file: "COMPASS_A1D_KA_MINUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "COMPASS KA^+ A_1^d", file: "COMPASS_A1D_KA_PLUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "COMPASS PI^- A_1^d", file: "COMPASS_A1D_PI_MINUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "COMPASS PI^+ A_1^d", file: "COMPASS_A1D_PI_PLUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "HERMES 2018 KA^- A_1^d", file: "HERMES_2018_A1D_KA_MINUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "HERMES 2018 KA^+ A_1^d", file: "HERMES_2018_A1D_KA_PLUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "HERMES 2018 PI^- A_1^d", file: "HERMES_2018_A1D_PI_MINUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "HERMES 2018 PI^+ A_1^d", file: "HERMES_2018_A1D_PI_PLUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "HERMES 2018 PI^- A_1^p", file: "HERMES_2018_A1P_PI_MINUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "HERMES 2018 PI^+ A_1^p", file: "HERMES_2018_A1P_PI_PLUS.yaml", cuts: [{name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "E142 g_1^N", file: "E142_G1N.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "E143 g_1^D", file: "E143_G1D.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "E143 g_1^P", file: "E143_G1P.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "E154 g_1^N", file: "E154_G1N.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "E155 g_1^P/F_1^P", file: "E155_G1P_F1P.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "E155 g_1^N/F_1^N", file: "E155_G1N_F1N.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "EMC g_1^P", file: "EMC_G1P.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "JLAB E06 014 g_1^N/F_1^N", file: "JLAB_E06_014_G1N_F1N.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "JLAB E97 103 g_1^N", file: "JLAB_E97_103_G1N.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "JLAB E99 117 g_1^N/F_1^N", file: "JLAB_E99_117_G1N_F1N.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "JLAB EG1 DVCS G_1^D/F_1^D", file: "JLAB_EG1_DVCS_G1D_F1D.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "JLAB EG1 DVCS G_1^P/F_1^P", file: "JLAB_EG1_DVCS_G1P_F1P.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "SMC g_1^D", file: "SMC_G1D.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "SMC g_1^P", file: "SMC_G1P.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "COMPASS g_1^D", file: "COMPASS_G1D.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "COMPASS g_1^P", file: "COMPASS_G1P.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "HERMES g_1^N", file: "HERMES_G1N.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "HERMES g_1^D", file: "HERMES_G1D.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "HERMES g_1^P", file: "HERMES_G1P.yaml", cuts: [{name: Wcut, min: 2.5495, max: 100}, {name: Qcut, min: 1, max: 100}], training fraction: 0.8}
- {name: "a3 sum rule", file: "sum_rule_a3.yaml", cuts: [], training fraction: 1}
- {name: "a8 sum rule", file: "sum_rule_a8.yaml", cuts: [], training fraction: 1}