An R package for 1H NMR data pre-processing.
require(devtools)
install_github("ManonMartin/PepsNMR", dependencies = TRUE)
require(PepsNMR)
Download first the compressed package files from GithHub, unzip it and save the local copy, then:
install.packages("path-to-PepsNMR_folder", repos = NULL, type="source")
require(PepsNMR)
Rem: if you use the second option, ensure that all the dependencies (i.e. the packages listed in the DESCRIPTION (Imports:) and NAMESPACE files (import and importFrom)) are correclty installed on your computer.
The following R code is the application of the pre-processing steps to the Human Serum dataset included in PepsNMR with graphical outputs. It can be copy-pasted to pre-process your own data.
###########################################
# A minimal example #
###########################################
# ==== load/attach the package =================
require(PepsNMR)
# ==== set graphical parameters =================
# save default graphical parameters
default.par <- par(no.readonly=T)
# select the index of the spectrum that will be drawn
spectrIndex <- 1
# colors
col1 <- "gray18"
col2 <- "firebrick1"
# ==== define the path to the data files =================
data_path <- system.file("extdata", package = "PepsNMRData")
# ==== read the FIDs and their metadata =================
fidList <- ReadFids(file.path(data_path, "HumanSerum"))
Fid_data0 <- fidList[["Fid_data"]]
Fid_info <- fidList[["Fid_info"]]
time <- as.numeric(colnames(Fid_data0))*1000
plot(time, Re(Fid_data0[spectrIndex,]),type="l", col = col2, xlab=expression(paste("Time (", 10^3*mu,"s)")),
ylab = "Intensity", main = "Raw FID (real part)", ylim = c(-1e6,7e5))
# ==== GroupDelayCorrection =================
Fid_data.GDC <- GroupDelayCorrection(Fid_data0, Fid_info)
par(mfrow=c(2,1), mar = c(4,4,2,2))
plot(time[0:300], Re(Fid_data0[spectrIndex,0:300]),
type="l", ylab = "Intensity", xlab="",
main="FID with the Group Delay (real part - zoom)", col = col1)
plot(time[0:300], Re(Fid_data.GDC[spectrIndex,0:300]),
type="l", ylab = "Intensity", xlab=expression(paste("Time (", mu,"s)")),
main="FID without the Group Delay (real part - zoom)", col = col1)
# ==== SolventSuppression =================
SS.res <- SolventSuppression(Fid_data.GDC, returnSolvent=TRUE)
Fid_data.SS <- SS.res[["Fid_data"]]
SolventRe <- SS.res[["SolventRe"]]
par(mar=c(4,4,1.5,1), mfrow=c(2,1))
plot(time[0:4000], Re(Fid_data.GDC[spectrIndex,0:4000]), col=col1,
type="l", ylab = "Intensity", xlab="",
main="FID and solvent residuals signal (real part - zoom)")
lines(time[0:4000],SolventRe[spectrIndex,0:4000], col=col2 , lwd = 1.3)
legend("topright", bty = "n", legend = c(expression(paste("Estimated solvent residuals signal ", (italic(W)))), expression(paste("FID signal ", (italic(S))))),
col=c(col2, col1), lty = 1)
plot(time[0:4000], Re(Fid_data.SS[1,0:4000]), col=col1,
type="l", ylab = "Intensity", xlab=expression(paste("Time (", mu,"s)")),
main="FID without solvent residuals signal (real part - zoom)")
lines(time[0:4000], rep(0, 4000), col=col2)
# ==== Apodization =================
Fid_data.A <- Apodization(Fid_data.SS, Fid_info)
par(mar=c(4,4,1.5,1), mfrow=c(2,1))
plot(time, Re(Fid_data.SS[spectrIndex,]), col=col1,
type="l", ylab = "Intensity", xlab="", main="FID before Apodisation")
plot(time, Re(Fid_data.A[spectrIndex,]), col=col1,
type="l", ylab = "Intensity", xlab=expression(paste("Time (", mu,"s)")),
main="FID after Apodisation")
# ==== Zero Filling =================
Fid_data.ZF <- ZeroFilling(Fid_data.A, fn = ncol(Fid_data.A))
par(mar=c(4,4,1.5,1), mfrow=c(2,1))
plot(time, Re(Fid_data.A[spectrIndex,]), col=col1,
type="l", ylab = "Intensity", xlab="", main="FID before Zero Filling")
time <- as.numeric(colnames(Fid_data.ZF))*1000
plot(time, Re(Fid_data.ZF[spectrIndex,]), col=col1,
type="l", ylab = "Intensity", xlab=expression(paste("Time (", mu,"s)")),
main="FID after Zero Filling")
# ==== FourierTransform =================
RawSpect_data.FT <- FourierTransform(Fid_data.ZF, Fid_info)
par(default.par)
plot(Re(RawSpect_data.FT[spectrIndex,]), col=col1, xaxt="n",
type="l", ylab = "Intensity", xlab = "ppm",
main="Spectrum after Fourier Transform")
at <- seq(1,dim(RawSpect_data.FT)[2], floor(dim(RawSpect_data.FT)[2]/10))
axis(side=1, at = at,
labels = round(as.numeric(colnames(RawSpect_data.FT)[at]),2))
# ==== ZeroOrderPhaseCorrection =================
Spectrum_data.ZOPC <- ZeroOrderPhaseCorrection(RawSpect_data.FT)
par(default.par)
plot(Re(Spectrum_data.ZOPC[spectrIndex,]), col=col1, xaxt="n",
type="l", ylab = "Intensity", xlab = "ppm",
main="Spectrum after Zero Order Phase Correction")
at <- seq(1,dim(Spectrum_data.ZOPC)[2], floor(dim(Spectrum_data.ZOPC)[2]/10))
axis(side=1, at = at,
labels = round(as.numeric(colnames(Spectrum_data.ZOPC)[at]),2))
# ==== InternalReferencing =================
target.value <- 0
Spectrum_data.IR <- InternalReferencing(Spectrum_data.ZOPC, Fid_info,
ppm.value = target.value)
par(default.par)
ppmvalues <- as.numeric(colnames(Spectrum_data.IR))
plot(Re(Spectrum_data.IR[spectrIndex,]), col=col1, xaxt="n",
type="l", ylab = "Intensity", xlab = "ppm",
main="Spectrum after Internal Referencing")
at <- seq(1,dim(Spectrum_data.IR)[2], floor(dim(Spectrum_data.IR)[2]/10))
axis(side=1, at = at,
labels = round(ppmvalues[at],2))
index <- which(abs(ppmvalues-target.value) == min(abs(ppmvalues-target.value)))
abline(v = index, col= col2)
legend("topright", bty = "n", legend = "Peak location",
col=col2, lty = 1)
# ==== BaselineCorrection =================
BC.res <- BaselineCorrection(Spectrum_data.IR, returnBaseline = TRUE,
lambda.bc = 1e8, p.bc = 0.01)
Spectrum_data.BC <- BC.res[["Spectrum_data"]]
Baseline <- BC.res[["Baseline"]]
par(mar=c(4,4,1,1), mfrow=c(2,1))
plot(Re(Spectrum_data.IR[spectrIndex,]), col=col1, xaxt="n",
type="l", ylab = "Intensity", xlab = "",
main="Spectrum before Baseline Correction")
at <- seq(1,dim(Spectrum_data.IR)[2], floor(dim(Spectrum_data.IR)[2]/10))
axis(side=1, at = at, labels = round(ppmvalues[at],2))
lines(Baseline[,1], col=col2)
legend("topright", bty = "n", legend = "Estimated baseline ",
col = col2, lty = 1)
plot(Re(Spectrum_data.BC[spectrIndex,]), col=col1, xaxt="n",
type="l", ylab = "Intensity", xlab = "ppm",
main="Spectrum after Baseline Correction")
axis(side=1, at = at, labels = round(ppmvalues[at],2))
# ==== NegativeValuesZeroing =================
Spectrum_data.NVZ <- NegativeValuesZeroing(Spectrum_data.BC)
par(default.par)
plot(Re(Spectrum_data.NVZ[spectrIndex,]), col=col1, xaxt="n",
type="l", ylab = "Intensity", xlab = "ppm",
main="Spectrum after Negative Values Zeroing")
axis(side=1, at = at, labels = round(ppmvalues[at],2))
# ==== Warping =================
W.res <- Warping(Spectrum_data.NVZ, returnWarpFunc = TRUE,
reference.choice = "fixed")
Spectrum_data.W <- W.res[["Spectrum_data"]]
warp_func <- W.res[["Warp.func"]]
par(mfrow=c(2,1),mar=c(4,4,1.5,1))
f = c(21, 20, 24) # warped spectra index to draw
fen = c(17780:18240) # x-window
ylim = c(0, max(c(Re(Spectrum_data.NVZ[c(1, f),fen]), Re(Spectrum_data.W[c(spectrIndex, f),fen]))))
# Unwarped spectra
plot(Re(Spectrum_data.NVZ[1, fen]), xaxt = "n", col=col2, ylab = "Intensity",ylim=ylim, type="l", xlab="ppm", main="Spectra before warping (real part - zoom)")
legend("topright", bty = "n", y.intersp = 0.8,legend=c("Unwarped spectra","Ref. spectrum "), lty = c(1,1), col=c(col1,col2))
axis(side=1, at = seq(1,length(fen), 114), labels = round(as.numeric(colnames(Spectrum_data.NVZ[,fen])[seq(1,length(fen), 114)]),2))
for (j in f) {
graphics::lines(Re(Spectrum_data.NVZ[j,fen]), col=col1, type="l")
}
# Warped spectra
plot(Re(Spectrum_data.W[1, fen]), col=col2, xaxt = "n",ylab = "Intensity",ylim=ylim, type="l", xlab="ppm", main="Warped spectra (real part - zoom)")
legend("topright", bty = "n", y.intersp = 0.8, legend=c("Warped spectra ","Ref. spectrum "), lty = c(1,1), col=c(col1,col2))
axis(side=1, at = seq(1,length(fen), 114), labels = round(as.numeric(colnames(Spectrum_data.NVZ[,fen])[seq(1,length(fen), 114)]),2))
for (j in f) {
graphics::lines(Re(Spectrum_data.W[j,fen]), col=col1, type="l")
}
# ==== WindowSelection =================
Spectrum_data.WS <- WindowSelection(Spectrum_data.W, from.ws = 10, to.ws = 0.2)
par(default.par)
at <- seq(1,dim(Spectrum_data.WS)[2], floor(dim(Spectrum_data.WS)[2]/10))
ppmvalues <- as.numeric(colnames(Spectrum_data.WS))
plot(Re(Spectrum_data.WS[spectrIndex,]), col = col1, xaxt = "n",
type = "l", ylab = "Intensity", xlab = "ppm",
main = "Spectrum after Window Selection")
axis(side = 1, at = at, labels = round(ppmvalues[at],2))
# ==== Bucketing =================
Spectrum_data.B <- Bucketing(Spectrum_data.WS, intmeth = "t")
par(mar=c(4,4,1,1), mfrow=c(2,1))
at <- seq(1,dim(Spectrum_data.WS)[2], floor(dim(Spectrum_data.WS)[2]/10))
ppmvalues <- as.numeric(colnames(Spectrum_data.WS))
plot(Re(Spectrum_data.WS[spectrIndex,]), col = col1, xaxt = "n",
type = "l", ylab = "Intensity", xlab = "",
main = "Spectrum before Bucketing")
axis(side = 1, at = at, labels = round(ppmvalues[at],2))
at <- seq(1,dim(Spectrum_data.B)[2], floor(dim(Spectrum_data.B)[2]/10))
ppmvalues <- as.numeric(colnames(Spectrum_data.B))
plot(Re(Spectrum_data.B[spectrIndex,]), col = col1, xaxt = "n",
type = "l", ylab = "Intensity", xlab = "ppm",
main = "Spectrum after Bucketing")
axis(side = 1, at = at, labels = round(ppmvalues[at],2))
# ==== RegionRemoval =================
Spectrum_data.RR <- RegionRemoval(Spectrum_data.B, typeofspectra = "serum")
par(default.par)
plot(Re(Spectrum_data.RR[spectrIndex,]), col = col, xaxt = "n",
type = "l", ylab = "Intensity", xlab = "ppm",
main = "Spectrum after Region Removal")
axis(side = 1, at = at, labels = round(ppmvalues[at],2))
# ==== Normalization =================
Spectrum_data.N <- Normalization(Spectrum_data.RR)
par(mar=c(4,4,1,1), mfrow=c(2,1))
plot(Re(Spectrum_data.RR[spectrIndex,]), col = col1, xaxt = "n",
type = "l", ylab = "Intensity", xlab = "ppm",
main = "Spectrum before Normalization")
axis(side = 1, at = at, labels = round(ppmvalues[at],2))
lines(Re(Spectrum_data.RR[2,]), col = "blue")
lines(Re(Spectrum_data.RR[3,]), col = "green")
plot(Re(Spectrum_data.N[spectrIndex,]), col = col1, xaxt = "n",
type = "l", ylab = "Intensity", xlab = "ppm",
main = "Spectrum after Normalization")
axis(side = 1, at = at, labels = round(ppmvalues[at],2))
lines(Re(Spectrum_data.N[2,]), col = "blue")
lines(Re(Spectrum_data.N[3,]), col = "green")