diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index c6f5f6f..48c58e6 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.9.3","generation_timestamp":"2023-09-28T09:40:58","documenter_version":"1.1.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.9.3","generation_timestamp":"2023-09-28T12:09:30","documenter_version":"1.1.0"}} \ No newline at end of file diff --git a/dev/index.html b/dev/index.html index 60ca360..9d730d4 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,5 +1,5 @@ -Home · MPISphericalHarmonics.jl

MPISphericalHarmonics

Documentation for MPISphericalHarmonics.

Base.:+Method
+(mfc1::MagneticFieldCoefficients, mfc2::MagneticFieldCoefficients; force::Bool=false)

force = true adds the coefficients even if the radius or center are not equal (set to values of the first coefficients).

source
Base.:-Method
-(mfc1::MagneticFieldCoefficients, mfc2::MagneticFieldCoefficients; force::Bool=false)

force = true subtracts the coefficients even if the radius or center are not equal (set to values of the first coefficients).

source
MPISphericalHarmonics.findFFPMethod
findFFP(coeffsMF::MagneticFieldCoefficients; 
-        returnasmatrix::Bool=true)

Description: Newton method to find the FFPs of the magnetic fields

Input:

  • coeffsMF - MagneticFieldCoefficients

kwargs:

  • returnasmatrix - Boolean
    true -> return FFPs as Matrix with size (3,#Patches) (default)
    false -> return FFPs as Array of NLsolve.SolverResults with size #Patches

Output:

  • ffp - FFPs of the magnetic field
source
MPISphericalHarmonics.getGradientFunction
getGradient(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))

Get the gradient of the field described by mfc[idx].

source
MPISphericalHarmonics.getJacobianFunction
getJacobian(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))

Get the Jacobian matrix of the field described by mfc[idx].

source
MPISphericalHarmonics.getOffsetFunction
getOffset(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))

Get the offset of the field described by mfc[idx].

source
MPISphericalHarmonics.magneticFieldMethod
magneticField(tDesign::SphericalTDesign, field::Union{AbstractArray{T,2},AbstractArray{T,3}};
+Home · MPISphericalHarmonics.jl

MPISphericalHarmonics

Documentation for MPISphericalHarmonics.

Base.:+Method
+(mfc1::MagneticFieldCoefficients, mfc2::MagneticFieldCoefficients; force::Bool=false)

force = true adds the coefficients even if the radius or center are not equal (set to values of the first coefficients).

source
Base.:-Method
-(mfc1::MagneticFieldCoefficients, mfc2::MagneticFieldCoefficients; force::Bool=false)

force = true subtracts the coefficients even if the radius or center are not equal (set to values of the first coefficients).

source
MPISphericalHarmonics.findFFPMethod
findFFP(coeffsMF::MagneticFieldCoefficients; 
+        returnasmatrix::Bool=true)

Description: Newton method to find the FFPs of the magnetic fields

Input:

  • coeffsMF - MagneticFieldCoefficients

kwargs:

  • returnasmatrix - Boolean
    true -> return FFPs as Matrix with size (3,#Patches) (default)
    false -> return FFPs as Array of NLsolve.SolverResults with size #Patches

Output:

  • ffp - FFPs of the magnetic field
source
MPISphericalHarmonics.getGradientFunction
getGradient(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))

Get the gradient of the field described by mfc[idx].

source
MPISphericalHarmonics.getJacobianFunction
getJacobian(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))

Get the Jacobian matrix of the field described by mfc[idx].

source
MPISphericalHarmonics.getOffsetFunction
getOffset(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))

Get the offset of the field described by mfc[idx].

source
MPISphericalHarmonics.magneticFieldMethod
magneticField(tDesign::SphericalTDesign, field::Union{AbstractArray{T,2},AbstractArray{T,3}};
 	       L::Int=Int(tDesign.T/2),
-	       calcSolid::Bool=true) where T <: Real

Description: Calculation of the spherical harmonic coefficients based on the measured t-design

Input:

  • tDesign - Measured t-design (type: SphericalTDesign)
  • field - Measured field (size = (J,N,C)) with J <= 3

kwargs:

  • L - Order up to which the coeffs be calculated (default: t/2)
  • calcSolid - Boolean (default: true)
    false -> spherical coefficients
    true -> solid coefficients

Output:

  • coeffs - spherical/solid coefficients, type: Array{SphericalHarmonicCoefficients}(3,C)
source
+ calcSolid::Bool=true) where T <: Real

Description: Calculation of the spherical harmonic coefficients based on the measured t-design

Input:

  • tDesign - Measured t-design (type: SphericalTDesign)
  • field - Measured field (size = (J,N,C)) with J <= 3

kwargs:

  • L - Order up to which the coeffs be calculated (default: t/2)
  • calcSolid - Boolean (default: true)
    false -> spherical coefficients
    true -> solid coefficients

Output:

  • coeffs - spherical/solid coefficients, type: Array{SphericalHarmonicCoefficients}(3,C)
source