MPISphericalHarmonics
Documentation for MPISphericalHarmonics.
Base.:+
Base.:-
MPISphericalHarmonics.findFFP
MPISphericalHarmonics.findFFP!
MPISphericalHarmonics.getGradient
MPISphericalHarmonics.getJacobian
MPISphericalHarmonics.getOffset
MPISphericalHarmonics.magneticField
MPISphericalHarmonics.shiftFFP!
Base.:+
— Method+(mfc1::MagneticFieldCoefficients, mfc2::MagneticFieldCoefficients; force::Bool=false)
force = true
adds the coefficients even if the radius or center are not equal (set to values of the first coefficients).
Base.:-
— Method-(mfc1::MagneticFieldCoefficients, mfc2::MagneticFieldCoefficients; force::Bool=false)
force = true
subtracts the coefficients even if the radius or center are not equal (set to values of the first coefficients).
MPISphericalHarmonics.findFFP!
— Methodffp = findFFP!(coeffsMF::MagneticFieldCoefficients)
Find FFP and set it as coeffsMF.ffp.
MPISphericalHarmonics.findFFP
— MethodfindFFP(coeffsMF::MagneticFieldCoefficients;
- returnasmatrix::Bool=true)
Description: Newton method to find the FFPs of the magnetic fields
Input:
coeffsMF
- MagneticFieldCoefficients
kwargs:
returnasmatrix
- Boolean
true -> return FFPs as Matrix with size (3,#Patches) (default)
false -> return FFPs as Array of NLsolve.SolverResults with size #Patches
Output:
ffp
- FFPs of the magnetic field
MPISphericalHarmonics.getGradient
— FunctiongetGradient(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))
Get the gradient of the field described by mfc[idx].
MPISphericalHarmonics.getJacobian
— FunctiongetJacobian(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))
Get the Jacobian matrix of the field described by mfc[idx].
MPISphericalHarmonics.getOffset
— FunctiongetOffset(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))
Get the offset of the field described by mfc[idx].
MPISphericalHarmonics.magneticField
— MethodmagneticField(tDesign::SphericalTDesign, field::Union{AbstractArray{T,2},AbstractArray{T,3}};
+Home · MPISphericalHarmonics.jl MPISphericalHarmonics
Documentation for MPISphericalHarmonics.
Base.:+
Base.:-
MPISphericalHarmonics.findFFP
MPISphericalHarmonics.findFFP!
MPISphericalHarmonics.getGradient
MPISphericalHarmonics.getJacobian
MPISphericalHarmonics.getOffset
MPISphericalHarmonics.magneticField
MPISphericalHarmonics.shiftFFP!
Base.:+
— Method+(mfc1::MagneticFieldCoefficients, mfc2::MagneticFieldCoefficients; force::Bool=false)
force = true
adds the coefficients even if the radius or center are not equal (set to values of the first coefficients).
sourceBase.:-
— Method-(mfc1::MagneticFieldCoefficients, mfc2::MagneticFieldCoefficients; force::Bool=false)
force = true
subtracts the coefficients even if the radius or center are not equal (set to values of the first coefficients).
sourceMPISphericalHarmonics.findFFP!
— Methodffp = findFFP!(coeffsMF::MagneticFieldCoefficients)
Find FFP and set it as coeffsMF.ffp.
sourceMPISphericalHarmonics.findFFP
— MethodfindFFP(coeffsMF::MagneticFieldCoefficients;
+ returnasmatrix::Bool=true)
Description: Newton method to find the FFPs of the magnetic fields
Input:
coeffsMF
- MagneticFieldCoefficients
kwargs:
returnasmatrix
- Boolean
true -> return FFPs as Matrix with size (3,#Patches) (default)
false -> return FFPs as Array of NLsolve.SolverResults with size #Patches
Output:
ffp
- FFPs of the magnetic field
sourceMPISphericalHarmonics.getGradient
— FunctiongetGradient(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))
Get the gradient of the field described by mfc[idx].
sourceMPISphericalHarmonics.getJacobian
— FunctiongetJacobian(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))
Get the Jacobian matrix of the field described by mfc[idx].
sourceMPISphericalHarmonics.getOffset
— FunctiongetOffset(mfc::MagneticFieldCoefficients, idx::AbstractUnitRange{Int64}=axes(mfc.coeffs,2))
Get the offset of the field described by mfc[idx].
sourceMPISphericalHarmonics.magneticField
— MethodmagneticField(tDesign::SphericalTDesign, field::Union{AbstractArray{T,2},AbstractArray{T,3}};
L::Int=Int(tDesign.T/2),
- calcSolid::Bool=true) where T <: Real
Description: Calculation of the spherical harmonic coefficients based on the measured t-design
Input:
tDesign
- Measured t-design (type: SphericalTDesign)field
- Measured field (size = (J,N,C)) with J <= 3
kwargs:
L
- Order up to which the coeffs be calculated (default: t/2)calcSolid
- Boolean (default: true)
false -> spherical coefficients
true -> solid coefficients
Output:
coeffs
- spherical/solid coefficients, type: Array{SphericalHarmonicCoefficients}(3,C)
sourceMPISphericalHarmonics.shiftFFP!
— MethodshiftFFP!(coeffsMF::MagneticFieldCoefficients)
Shift magnetic-field coefficients into FFP (and calculate it if not available).
sourceSettings
This document was generated with Documenter.jl version 1.1.0 on Thursday 28 September 2023. Using Julia version 1.9.3.
+ calcSolid::Bool=true) where T <: Real
Description: Calculation of the spherical harmonic coefficients based on the measured t-design
Input:
tDesign
- Measured t-design (type: SphericalTDesign)field
- Measured field (size = (J,N,C)) with J <= 3
kwargs:
L
- Order up to which the coeffs be calculated (default: t/2)calcSolid
- Boolean (default: true)
false -> spherical coefficients
true -> solid coefficients
Output:
coeffs
- spherical/solid coefficients, type: Array{SphericalHarmonicCoefficients}(3,C)
MPISphericalHarmonics.shiftFFP!
— MethodshiftFFP!(coeffsMF::MagneticFieldCoefficients)
Shift magnetic-field coefficients into FFP (and calculate it if not available).