forked from kazutotess/ML-ROM_Various_Shapes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Muliti-Scale_CNN-AE.py
256 lines (219 loc) · 8 KB
/
Muliti-Scale_CNN-AE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import pickle
import numpy as np
import pandas as pd
from tqdm import tqdm
import tensorflow as tf
from sklearn.model_selection import train_test_split
from keras.layers import (Input, Conv2D, MaxPooling2D, UpSampling2D,
Add, BatchNormalization, Activation)
from keras.models import Model
from keras.backend import tensorflow_backend
from keras.callbacks import ModelCheckpoint
from keras import backend as K
def conv_down_block(input_img, size, layer_nm, chanel_nm, act):
for i in range(layer_nm[0]):
if i == 0:
x = Conv2D(chanel_nm[0],
(size, size),
padding='same')(input_img)
else:
x = Conv2D(chanel_nm[0],
(size, size),
padding='same')(x)
x = BatchNormalization()(x)
x = Activation(act)(x)
x = MaxPooling2D((2, 2), padding='same')(x)
for i in range(layer_nm[1]):
x = Conv2D(chanel_nm[1],
(size, size),
padding='same')(x)
x = BatchNormalization()(x)
x = Activation(act)(x)
x = MaxPooling2D((2, 2), padding='same')(x)
for i in range(layer_nm[2]):
x = Conv2D(chanel_nm[2],
(size, size),
padding='same')(x)
x = BatchNormalization()(x)
x = Activation(act)(x)
if i != layer_nm[2] - 1:
x = MaxPooling2D((2, 2), padding='same')(x)
return x
def conv_up_block(encoded, size, layer_nm, chanel_nm, act, phys_num):
for i in range(layer_nm[-1] - 1):
if i == 0:
x = Conv2D(chanel_nm[-1],
(size, size),
padding='same')(encoded)
else:
x = Conv2D(chanel_nm[-1],
(size, size),
padding='same')(x)
x = BatchNormalization()(x)
x = Activation(act)(x)
x = UpSampling2D((2, 2))(x) # 12,6,4
for i in range(layer_nm[-2]):
x = Conv2D(chanel_nm[-2],
(size, size),
padding='same')(x)
x = BatchNormalization()(x)
x = Activation(act)(x)
x = UpSampling2D((2, 2))(x) # 24,12,8
for i in range(layer_nm[-3]):
x = Conv2D(
chanel_nm[-3], (size, size), padding='same')(x)
x = BatchNormalization()(x)
x = Activation(act)(x)
x = UpSampling2D((2, 2))(x) # 384,192,16
x = Conv2D(phys_num, (size, size),
activation='linear', padding='same')(x)
return x
def MS_CNN_AE(x_num, y_num, phys_num, filsize, layer_nm, chanel_nm, act,
optimizer, loss):
input_img = Input(
shape=(
x_num,
y_num,
phys_num)
)
filsize1 = filsize[0]
filsize2 = filsize[1]
filsize3 = filsize[2]
conv1 = conv_down_block(
input_img, filsize1, layer_nm, chanel_nm, act)
conv2 = conv_down_block(
input_img, filsize2, layer_nm, chanel_nm, act)
conv3 = conv_down_block(
input_img, filsize3, layer_nm, chanel_nm, act)
x = Add()([conv1, conv2, conv3])
x = Conv2D(chanel_nm[2], (3, 3), padding='same')(x)
x = BatchNormalization()(x)
encoded = Activation(act)(x)
x = Conv2D(chanel_nm[2], (3, 3), padding='same')(encoded)
x = BatchNormalization()(x)
x = Activation(act)(x)
conv4 = conv_up_block(x, filsize1, layer_nm, chanel_nm, act, phys_num)
conv5 = conv_up_block(x, filsize2, layer_nm, chanel_nm, act, phys_num)
conv6 = conv_up_block(x, filsize3, layer_nm, chanel_nm, act, phys_num)
decoded = Add()([conv4, conv5, conv6])
print('\n\nModel was created.')
print('\n----------------Model Configuration----------------\n')
print('Model : Multi-scale CNN\n')
print('Input shape of model : %d, %d, %d'
% (input_img.shape[-3],
input_img.shape[-2],
input_img.shape[-1]))
print('Shape of encoded data : %d, %d, %d'
% (encoded.shape[-3],
encoded.shape[-2],
encoded.shape[-1]))
print('Output shape of model : %d, %d, %d'
% (decoded.shape[-3],
decoded.shape[-2],
decoded.shape[-1]))
print('\nOptimizer : ' + optimizer)
print('Loss function : ' + loss)
print('Activation function : ' + act)
print('\n---------------------------------------------------\n')
model = Model(input_img, decoded)
model.compile(
optimizer=optimizer,
loss=loss
)
return model
def main():
# specify GPU
config = tf.ConfigProto(
gpu_options=tf.GPUOptions(
allow_growth=True,
visible_device_list="2"
)
)
session = tf.Session(config=config)
tensorflow_backend.set_session(session)
# set parameters
kind_num = 2 # number of shapes
num_of_ts = 500 # number of instantaneous fields for each shapes
x_num = 384 # grid point of x direction
y_num = 192 # grid point of y direction
phys_num = 3 # u, v, p
path_to_present_dir = './' # directory which contains flow data
save_file = '/CNN_autoencoder/' # directory for saving ML model
model_name = 'Test_CNN_AE' # name of ML model file
# the model will be saved as
# path_to_present_dir + save_file + 'Model/' + model_name + '.hdf5'
act = 'relu' # activation function
filsize = [3, 5, 9] # filter size for each scale CNN
layer_nm = [1, 4, 2] # number of layers
chanel_nm = [16, 8, 4] # number of chanels
loss = 'gdl_mse' # loss function
optimizer = 'adam' # optimizer
ratio_tr_te = 0.2 # ratio of training and validation data
num_epochs = 2 # number of epochs
batch_size = 50 # batch size
# prepare flow data
X = np.zeros([kind_num, num_of_ts,
x_num, y_num, phys_num])
for i in tqdm(range(1, kind_num + 1)):
fnstr = path_to_present_dir + '/data/pickles/data_' + \
'{0:03d}'.format(i)+'.pickle'
# Pickle load
with open(fnstr, 'rb') as f:
obj = pickle.load(f)
X[i - 1, :, :, :, :phys_num] = obj[:num_of_ts]
X = np.reshape(X, [-1, X.shape[-3], X.shape[-2], X.shape[-1]])
x_train, x_test, y_train, y_test = \
train_test_split(X, X[:, :, :, :phys_num], test_size=ratio_tr_te,
random_state=None)
# construct machine learning model (Multi-Scale CNN AE)
model = MS_CNN_AE(x_num, y_num, phys_num, filsize,
layer_nm, chanel_nm, act, optimizer, loss)
# train the model
callbacks = []
os.makedirs(path_to_present_dir + save_file + 'Model/', exist_ok=True)
callbacks.append(
ModelCheckpoint(
path_to_present_dir + save_file + 'Model/' + model_name + '.hdf5',
monitor='val_loss',
save_best_only=True,
verbose=1
)
)
print('\n-----------------Training Condition----------------\n')
print('X training data : ', x_train.shape)
print('Y training data : ', y_train.shape)
print('X test data : ', x_test.shape)
print('Y test data : ', y_test.shape)
print('Callbacks : Model Checkpoint')
print('\n---------------------------------------------------\n')
print('Training is now begining.')
history = model.fit(
x_train,
y_train,
epochs=num_epochs,
batch_size=batch_size,
shuffle=True,
validation_data=(x_test, y_test),
callbacks=callbacks,
verbose=1
)
df_results = pd.DataFrame(history.history)
df_results['epoch'] = history.epoch
os.makedirs(
path_to_present_dir + save_file + 'History/',
exist_ok=True
)
df_results.to_csv(
path_or_buf=path_to_present_dir +
save_file +
'History/' +
model_name +
'.csv',
index=False
)
print('History was saved.')
K.clear_session()
print('The session was cleared.')
if __name__ == '__main__':
main()