forked from rutgers-apl/CASM-Verify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mainhelper.py
828 lines (704 loc) · 33.4 KB
/
mainhelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
import sys
import dslparse
import dslinstructions as di
import z3
import x86parse
import x86todsl
import x86todsl8bit
import depgraph
import config
import subprocess
import ansiCode
import time
# Reads file and returns the string representation of it.
def readFile(fileName) :
myFile = open(fileName, 'r')
retString = myFile.read()
myFile.close()
return retString
def ParseProgramToDsl(programString, plang, progPrefix) :
if plang == 0 : return ParseSpecStringToDsl(programString, progPrefix)
elif plang == 1 : return ParseAsmStringToDSL(programString, progPrefix)
else :
print()
sys.exit("Unknown code for config.p1lang = %d" % (plang))
# Reads the spec string and turn it into Dsl. Each DslInstruction class will contain one instruction.
def ParseSpecStringToDsl(specString, progOrig) :
# Parse dsl program string
specAst = dslparse.dslToAst(specString)
# Separate out function definitions and other parts.
functions, specAst = ProcessFunctions(specAst)
# Inline the function calls with function definition.
replaceFunctions(functions, specAst)
# Unroll Loops
specAst = UnrollLoops(specAst)
# Once replaced, see if it's a "memory" store or load.
for sa in specAst :
if isinstance(sa.lhs, di.ArrayCall) and sa.comparator == "=" :
sa.comparator = "<-"
# Set programOrigin.
for sa in specAst :
sa.SetProgramOrigin(progOrig, False)
return specAst
def ProcessFunctions(dslAst) :
functions = {}
retDslAst = []
for da in dslAst :
if isinstance(da, di.Function) or isinstance(da, di.Macro) :
functions[da.name] = da
else :
retDslAst.append(da)
return functions, retDslAst
def replaceFunctions(functions, ast) :
i = 0
while i < len(ast) :
da = ast[i]
retVal = da.ReplaceFunction(functions)
if retVal != None :
ast[i:i+1] = retVal
i = i - 1
i = i + 1
# Read the asm strings, parse each asm instruction and translate to dsl instructions.
def ParseAsmStringToDSL(asmString, progOrigin) :
# Remove comments: double slash stuff.
asmStringList = asmString.splitlines()
asmStringList = list(map((lambda x: OneLineRemoveComment(x).strip()), asmStringList))
asmStringList = list(filter((lambda x: x != ""), asmStringList))
finalString = ""
for asl in asmStringList :
finalString = finalString + asl + "\n"
# Parse asmString using pyparsing
insts = x86parse.ASMToX86Parse(finalString)
# Convert asm instructions into DSL instructions
x86Dsl = None
if config.memModel == 32 :
x86Dsl = x86todsl.ConvertToDsl(insts)
elif config.memModel == 8 :
x86Dsl = x86todsl8bit.ConvertToDsl(insts)
for xd in x86Dsl :
xd.SetProgramOrigin(progOrigin, False)
return x86Dsl
# Function that removes everything after '//' token (which are comments)
def OneLineRemoveComment(s) :
commentIndex = s.find('//')
if commentIndex < 0 :
return s
return s[:commentIndex]
# Unrolls dsl that may have loops to a straight line code.
# Return value: A list of dslinstructions that represent a straight line code.
def UnrollLoops(progInDsl) :
progState = {}
progState["lineNum"] = 0
retList = []
oneBasicBlock = GetNextBasicBlock(progInDsl, progState)
while oneBasicBlock != [] :
retList = retList + oneBasicBlock
oneBasicBlock = GetNextBasicBlock(progInDsl, progState)
return retList
# Gets the next basic block (iteration) based on the state of dslProgState
# Return value: a list of dslinstructions that represent a basic block
def GetNextBasicBlock(progInDsl, progState) :
retList = []
if len(progInDsl) == 0 :
return []
while progState["lineNum"] < len(progInDsl) :
inst = progInDsl[progState["lineNum"]]
if not isinstance(inst, di.Loop) :
# If it's not a loop, add the instruction to the return List.
newInst = inst.Copy()
retList.append(newInst)
progState["lineNum"] = progState["lineNum"] + 1
if isinstance(inst, di.Loop) :
if len(retList) > 0 :
# If there's something in the return List, then return what we have.
return retList
if inst.i not in progState :
# lp.i = initiate the index value
progState[inst.i] = inst.lb
else :
# lp.i = increment the index value
progState[inst.i] = progState[inst.i] + 1
if progState[inst.i] > inst.ub :
# if lp.i > lp.ub, then we no longer need to iterate through this for loop.
progState.pop(inst.i, None)
progState["lineNum"] = progState["lineNum"] + 1
continue
if len(inst.expr) == 0 :
# If the for loop is empty, then we have nothing to do in this for loop.
progState["lineNum"] = progState["lineNum"] + 1
continue
iVal = progState[inst.i]
for stmt in inst.expr :
# For each statement in the for loop, replace index variable to the concrete value
# Add the new statement to the return List
newStmt = stmt.Copy()
newStmt.FindAndReplace(inst.i, iVal)
retList.append(newStmt)
return retList
return retList
# Look for uses of array. If the array is only stored/accessed using constants, we can inline them.
def InlineArrayAccesses(preAst, specAst, postAst) :
arrIndexOnlyConstDict = {}
for inst in preAst :
inst.AnalyzeArrayIndexOnlyConst(arrIndexOnlyConstDict)
for inst in specAst :
inst.AnalyzeArrayIndexOnlyConst(arrIndexOnlyConstDict)
for inst in postAst :
inst.AnalyzeArrayIndexOnlyConst(arrIndexOnlyConstDict)
arrToInlineList = []
for k, v in arrIndexOnlyConstDict.items() :
if v == True : arrToInlineList.append(k)
del arrIndexOnlyConstDict
for inst in preAst :
inst.InlineArrayReadWrite(arrToInlineList)
for inst in specAst :
inst.InlineArrayReadWrite(arrToInlineList)
for inst in postAst :
inst.InlineArrayReadWrite(arrToInlineList)
def ConvertToSSAForms(preAst, specAst, asmAst, postAst) :
ssaState = {}
ToSSA(preAst, ssaState, False)
ToSSA(specAst, ssaState)
ToSSA(asmAst, ssaState)
ToSSA(postAst, ssaState, False)
RemoveUndefinedInstruction(asmAst)
def ToSSA(dslAst, indexMapping, updateIndex = True) :
for da in dslAst :
da.UpdateSsaIndex(indexMapping, updateIndex)
# For assembly, in order to express "undefinedness" of a register, we use the form
# reg = builtin_undef.
# Once the instructions are turned to SSA form, then we can simply remove such instruction,
# as "reg" will be an unbounded variable thereafter.
def RemoveUndefinedInstruction(ast) :
ast[:] = [aa for aa in ast if not isinstance(aa, di.Statement) or \
not isinstance(aa.lhs, di.Variable) or \
not isinstance(aa.rhs, di.Variable) or \
aa.rhs.name != "builtin_undef"]
def ConstantPropagate(ast) :
for inst in ast :
inst.ConstantPropagate()
def ExtractDataRegions(preAst) :
dataRegions = [pa for pa in preAst if isinstance(pa, di.DataRegion)]
preAst = [pa for pa in preAst if not isinstance(pa, di.DataRegion)]
return preAst, dataRegions
def GetGraphsFromAsts(dataRegionAst, preAst, specAst, asmAst, postAst) :
###########################
# Create dataRegion graph
ansiCode.Print("data region")
dataRegionGraph = depgraph.DepGraph("dataRegion")
for dr in dataRegionAst :
dataRegionGraph.AddDslInstruction(dr, [])
###########################
# Create precondition graph
ansiCode.Print("%s%spre condition" % (ansiCode.Left(11), ansiCode.ClearLine(0)))
preGraph = depgraph.DepGraph("preTempName")
for pa in preAst :
preGraph.AddDslInstruction(pa, [])
##########################
# Create Spec + Impl Graph
ansiCode.Print("%s%sp1" % (ansiCode.Left(13), ansiCode.ClearLine(0)))
programGraph = depgraph.DepGraph("P1TempName")
for sa in specAst :
programGraph.AddDslInstruction(sa, [])
ansiCode.Print("%s%sp2" % (ansiCode.Left(2), ansiCode.ClearLine(0)))
programGraph.tempName = "P2TempName"
for aa in asmAst :
programGraph.AddDslInstruction(aa, [])
variables = list(filter(lambda x : x.type == depgraph.VertexNode.VertexType.VAR or \
x.type == depgraph.VertexNode.VertexType.ARR, \
programGraph.vertices))
#############################
# Create post condition graph
ansiCode.Print("%s%spost condition" % (ansiCode.Left(2), ansiCode.ClearLine(0)))
postGraph = depgraph.DepGraph("postTempName")
for pa in postAst :
postGraph.AddDslInstruction(pa, variables)
# Identify all "progOutput." progOutput are the nodes used in final "==" comparison.
for v in postGraph.vertices :
if depgraph.VertexNode.VertexType.IsVarOrTemp(v.type) and \
v.operator == depgraph.VertexNode.OpCode.EQ and v.users == None :
# There are two operands: left side and right side. Mark both of them as progOutput
v.operands[0].AddMetadata("progOutput", True)
v.operands[1].AddMetadata("progOutput", True)
v.AddMetadata("finalComp", True)
# Clean variables list.
variables.clear()
del variables
# Nodes between preGraph, programGraph, and postGraph are all shared. I don't know if it's the
# best way of doing it... but, we will go ahead with it for now.
# We move nodes from postGraph to programGraph. We move all expression DAGS to programGraph. In
# the end, postGraph should only have "var1 == var2" graphs.
# Example: if postGraph has "a + b == c", then, postGraph will have nodes "a", "b",
# "postTempName1 = a + b", and "postTempName1 == c". We move "a", "b", "postTempName1 = a + b"
# nodes to preGraph/programGraph, and only keep "postTempName1 == c"
###########################################
# Move nodes from postGraph to programGraph
ansiCode.Print("%s%sOrganizing nodes" % (ansiCode.Left(14), ansiCode.ClearLine(0)))
for v in list(postGraph.vertices) :
if "finalComp" not in v.metadata :
postGraph.vertices.remove(v)
if not v in programGraph.vertices :
programGraph.vertices.insert(0, v)
########################################################
# Resolve "assign" nodes. Get rid of all "assign" nodes.
for v in programGraph.vertices :
if v.operator == depgraph.VertexNode.OpCode.ASSIGN :
assert(v.type == depgraph.VertexNode.VertexType.VAR or \
v.type == depgraph.VertexNode.VertexType.TEMP)
assert(v.operands != None and len(v.operands) == 1)
depgraph.DepGraph.ReplaceVertex(v, v.operands[0])
############
# Reduce DAG
ansiCode.Print("%s%sReducing DAGs" % (ansiCode.Left(16), ansiCode.ClearLine(0)))
ReduceProgramGraph(programGraph)
###############################
# Caclualte Topological Ranking
ansiCode.Print("%s%sCalculating topological ranking" % (ansiCode.Left(13), ansiCode.ClearLine(0)))
CalculateTopologicalRanking(programGraph)
return dataRegionGraph, preGraph, programGraph, postGraph
def ReduceProgramGraph(programGraph) :
listOfProgOutput = [x for x in programGraph.vertices if "progOutput" in x.metadata]
for po in listOfProgOutput :
AddMetadataToSelfAndAllOperands(po, "marked", True)
for v in [x for x in programGraph.vertices if "marked" not in x.metadata] :
v.CutAllTies()
programGraph.vertices.remove(v)
for po in listOfProgOutput :
RemoveMetadataToSelfAndAllOperands(po, "marked")
def AddMetadataToSelfAndAllOperands(v, meta, val) :
if meta in v.metadata : return
v.AddMetadata(meta, val)
if v.operands == None : return
for op in v.operands :
if op != None : AddMetadataToSelfAndAllOperands(op, meta, val)
def RemoveMetadataToSelfAndAllOperands(v, meta) :
if not meta in v.metadata : return
v.RemoveMetadata(meta)
if v.operands == None : return
for op in v.operands :
if op != None : RemoveMetadataToSelfAndAllOperands(op, meta)
def SymbolicExecAndGetModelDict(programExpr, precondExpr, sampleInput, varList) :
sampleInputExpr = z3.And(list(map(lambda k : k.VertexNameToSmt() == sampleInput[k], \
sampleInput.keys())))
s = z3.Solver()
z3.reset_params()
s.add(precondExpr)
s.add(programExpr)
s.add(sampleInputExpr)
s.check()
model = s.model()
return {v:model[v.VertexNameToSmt()] for v in varList}
def UpdateExecutedValueDict(executedValueDict, modelDict) :
for evk in executedValueDict :
executedValueDict[evk].append(modelDict[evk])
def AreAllElementsTheSame(lst) :
iterator = iter(lst)
try:
first = next(iterator)
except StopIteration:
return True
return all(first == rest for rest in iterator)
# candiEquivSet = candidate equivalent set.
# sampleResult = is the new model for a new sample.
# Refine candiEquivSet using the new sampleResult.
def RefineCandidateEquivSet(candiEquivSet, sampleResult) :
newCandiEquivSet = []
for ces in candiEquivSet :
# For each equivalent set, split the set into smaller sets
# depending on the new sampleResult values.
tempDictBucket = {}
for el in ces :
AddToDictBucket(tempDictBucket, sampleResult[el], el)
# Once it is split, identify the sets that have more than one element,
# and add it to the newCandiEquivSet
for key in tempDictBucket :
if len(tempDictBucket[key]) > 1 :
newCandiEquivSet.append(tempDictBucket[key])
return newCandiEquivSet
# Add el into the key in DictBucket
def AddToDictBucket(dictBucket, key, el) :
if key == None :
# Then el can be ANYTHING. In this case, we do not include it in CandidateEquivalenceSet.
return
if (key, key.size()) not in dictBucket :
dictBucket[(key, key.size())] = []
if el not in dictBucket[(key, key.size())] :
dictBucket[(key, key.size())].append(el)
def CalculateTopologicalRanking(graph) :
# We will take every vertex, and calculate topological ranking.
for v in graph.vertices : v.CalculateTopRank()
# Input
# vertex1 : a temporary/variable vertex
# vertex2 : a temporary/variable vertex where vertex2 != vertex1
# baseGraph : the dependency graph of a program
#
# Output
# Creates a minimal subgraph of baseGraph, where the outputs are vertex1 and vertex2.
# The minimal subgraph contains a copy of the vertices in baseGraph. Therefore, changing the
# vertices in the minimal subgraph will not change any vertex in baseGraph.
#
def CalculateMinimalRelationalSubGraph(vertex1, vertex2) :
AddMetadataToSelfAndAllOperands(vertex1, "red", True)
AddMetadataToSelfAndAllOperands(vertex2, "blue", True)
CalculateMRSGVertices(vertex1, vertex2)
def CalculateMRSGVertices(vertex1, vertex2) :
CalculateMRSGVertex(vertex1)
CalculateMRSGVertex(vertex2)
def CalculateMRSGVertex(vertex) :
if "MRSG_Analyzed" in vertex.metadata : return
assert("red" in vertex.metadata or "blue" in vertex.metadata)
if ("red" in vertex.metadata) ^ ("blue" in vertex.metadata) :
vertex.AddMetadata("MRSG", True)
# Otherwise, vertex is both "red" and "blue" = "purple"
else :
assert(vertex.users != None)
for usr in vertex.users :
if ("red" in usr.metadata) ^ ("blue" in usr.metadata) :
vertex.AddMetadata("MRSG", True)
break
vertex.AddMetadata("MRSG_Analyzed", True)
if "MRSG" not in vertex.metadata : return
# Check if the operands are "MRSG" vertex
if vertex.operands == None : return
for op in vertex.operands :
# If vertex is "MRSG" node, and op is VertexType.FUNC or VertexType.IMM,
# they're "MRSG" as well:
if op.type == depgraph.VertexNode.VertexType.FUNC : op.AddMetadata("MRSG", True)
elif op.type == depgraph.VertexNode.VertexType.IMM : op.AddMetadata("MRSG", True)
else : CalculateMRSGVertex(op)
return
def DeleteMetadatasFromGraph(graph, metadatas) :
for v in graph.vertices :
for md in graph.vertices :
v.RemoveMetadata(md)
# From this read node, walk down the graph
# For every write node, determine def, maybe, and not
# Goal: Narrow the scope of array read (to only include indexes/values it may read)
# Implementation: Let's use conditional nodes to do this for now.
# (1) maybe: create if (read index == write index) then (write value) else (empty).
# (2) def: fill (empty) with (write value), stop and return.
# (3) not: skip this node and keep going.
# (4) initial array: fill (empty) with initialArray[read index], stop and return.
def ReduceThisArrayRead(vertex, graph, addtlExprs) :
# Helper function to add newly created vertices to graph.
def AddVertexAndDescendantsToGraph(node, graph) :
if "NotInGraph" not in node.metadata : return
# It's created in this function. We should add it to graph.vertices
graph.vertices.insert(0, node)
node.RemoveMetadata("NotInGraph")
if node.operands == None : return
for op in node.operands :
AddVertexAndDescendantsToGraph(op, graph)
# Make sure this vertex is array read node.
assert(vertex.operator == depgraph.VertexNode.OpCode.LOAD)
# (1) Simplest case : If vertex accesses from initial array, then we dont do anything.
if vertex.operands[0].operator == depgraph.VertexNode.OpCode.NONE and \
vertex.operands[0].type == depgraph.VertexNode.VertexType.ARR : return vertex
newValueRoot = depgraph.VertexNode()
newValueRoot.operator = depgraph.VertexNode.OpCode.NONE
newValueRoot.name = "reducedReadNode"
newValueRoot.index = graph.GetNextNameIndex()
newValueRoot.type = depgraph.VertexNode.VertexType.NONE
newValueRoot.AddMetadata("NotInGraph", True)
newValueRoot.topRank = vertex.topRank
newValueRoot.equivClassId = vertex.equivClassId
currentHole = newValueRoot
thisReadIndex = vertex.operands[1]
iterator = vertex.operands[0]
config.readNodeNum = config.readNodeNum + 1
config.indexAliasNum = 0
while iterator.operands != None :
arrayWriteIndex = iterator.operands[1]
arrayWriteValue = iterator.operands[2]
config.indexAliasNum = config.indexAliasNum + 1
config.totalIndexAliasNum = config.totalIndexAliasNum + 1
ansiCode.PrintOnThisLine(" Reducing read node #%d: alias #%d" % (config.readNodeNum, config.indexAliasNum))
# If arrayWriteIndex and thisReadIndex is both IMM, then just compare. In this case, there
# is only def-alias and not-alias.
if arrayWriteIndex.type == depgraph.VertexNode.VertexType.IMM and \
thisReadIndex.type == depgraph.VertexNode.VertexType.IMM :
if arrayWriteIndex.value == thisReadIndex.value :
depgraph.DepGraph.ReplaceVertex(currentHole, arrayWriteValue)
if newValueRoot == currentHole : newValueRoot = arrayWriteValue
currentHole = arrayWriteValue
depgraph.DepGraph.ReplaceVertex(vertex, newValueRoot)
AddVertexAndDescendantsToGraph(newValueRoot, graph)
return newValueRoot
else :
iterator = iterator.operands[0]
continue
# Check if arrayWriteIndex def-alias with thisReadIndex.
# If arrayWriteIndex and thisReadIndex are not both immediate, then we should have verified
# the equivalence between these two nodes already.
# TODO : Verify equivalence between immediate nodes and var/temp nodes.
if depgraph.VertexNode.VertexType.IsVarOrTemp(arrayWriteIndex.type) and \
depgraph.VertexNode.VertexType.IsVarOrTemp(thisReadIndex.type) :
# In this case, the two index definitely aliases if they are the same nodes.
if arrayWriteIndex == thisReadIndex :
depgraph.DepGraph.ReplaceVertex(currentHole, arrayWriteValue)
if newValueRoot == currentHole : newValueRoot = arrayWriteValue
currentHole = arrayWriteValue
depgraph.DepGraph.ReplaceVertex(vertex, newValueRoot)
AddVertexAndDescendantsToGraph(newValueRoot, graph)
return newValueRoot
else :
check = VerifyEquivalent(arrayWriteIndex, thisReadIndex, graph, addtlExprs)
if check == "unsat" :
depgraph.DepGraph.ReplaceVertex(currentHole, arrayWriteValue)
if newValueRoot == currentHole : newValueRoot = arrayWriteValue
currentHole = arrayWriteValue
depgraph.DepGraph.ReplaceVertex(vertex, newValueRoot)
AddVertexAndDescendantsToGraph(newValueRoot, graph)
return newValueRoot
elif check == "unknown" :
config.currentUnknownCount = config.currentUnknownCount + 1
if config.currentUnknownCount >= config.maxUnknownCount :
config.analysisEndTime = time.time()
ansiCode.Print("\n")
ansiCode.PrintOnThisLineBold("%sp1 is not equivalent to p2 (Reason: SMT Timeout)\n" % (ansiCode.red))
config.PrintStatistics()
config.PrintGout("p1 is not equivalent to p2 (Reason: SMT Timeout)")
sys.exit("")
# Check if it maybe aliases
check = VerifyMayAlias(arrayWriteIndex, thisReadIndex, graph, addtlExprs)
if check == "sat":
# Create equality compare node
tempCmpNode = depgraph.VertexNode()
tempCmpNode.operands = [arrayWriteIndex, thisReadIndex]
for op in tempCmpNode.operands :
if op.users == None : op.users = []
op.users.append(tempCmpNode)
tempCmpNode.operator = depgraph.VertexNode.OpCode.EQ
tempCmpNode.value = None
tempCmpNode.name = "reducedReadNode"
tempCmpNode.index = graph.tempNameCounter
graph.tempNameCounter = graph.GetNextNameIndex()
tempCmpNode.bitlength = -1 # Compare is a boolean. bitlength does not exist.
tempCmpNode.type = depgraph.VertexNode.VertexType.TEMP
tempCmpNode.AddMetadata("NotInGraph", True)
# Create new hole.
newHole = depgraph.VertexNode()
newHole.operator = depgraph.VertexNode.OpCode.NONE
newHole.name = "reducedReadNode"
newHole.index = graph.GetNextNameIndex()
newHole.type = depgraph.VertexNode.VertexType.NONE
newHole.AddMetadata("NotInGraph", True)
newHole.topRank = currentHole.topRank - 1
# Fill currentHole with Conditional Assignment node.
currentHole.operands = [tempCmpNode, arrayWriteValue, newHole]
for op in currentHole.operands :
if op.users == None : op.users = []
op.users.append(currentHole)
currentHole.operator = depgraph.VertexNode.OpCode.CONDITIONAL
currentHole.value = None
currentHole.type = depgraph.VertexNode.VertexType.TEMP
currentHole.bitlength = arrayWriteValue.bitlength
currentHole.AddMetadata("NotInGraph", True)
# Update currentHole to the newHole.
currentHole = newHole
elif check == "unknown" :
config.currentUnknownCount = config.currentUnknownCount + 1
if config.currentUnknownCount >= config.maxUnknownCount :
config.analysisEndTime = time.time()
ansiCode.Print("\n")
ansiCode.PrintOnThisLineBold("%sp1 is not equivalent to p2 (Reason: SMT Timeout)\n" % (ansiCode.red))
config.PrintStatistics()
config.PrintGout("p1 is not equivalent to p2 (Reason: SMT Timeout)")
sys.exit("")
# There is no aliasing. Keep looking at the next ones.
iterator = iterator.operands[0]
# The fact that we reached here, means there was no def-alias. We fill the hole with array read
# node using initial array and thisReadIndex.
currentHole.operands = [iterator, thisReadIndex]
for op in currentHole.operands :
if op.users == None : op.users = []
op.users.append(currentHole)
currentHole.operator = depgraph.VertexNode.OpCode.LOAD
currentHole.type = depgraph.VertexNode.VertexType.TEMP
currentHole.bitlength = iterator.arrayElBitlength
depgraph.DepGraph.ReplaceVertex(vertex, newValueRoot)
AddVertexAndDescendantsToGraph(newValueRoot, graph)
return newValueRoot
def FindArrayAccessFromAncestors(vertex) :
arrayAccessList = []
verticesToCheck = [vertex]
while verticesToCheck != [] :
nextVertex = verticesToCheck.pop(0)
# If already analyzed, all its ancestors are analyzed too.
if "aaa" in nextVertex.metadata : continue
# If it's a LOAD, add to arrayAccessSet.
if nextVertex.operator == depgraph.VertexNode.OpCode.LOAD :
if not nextVertex in arrayAccessList :
arrayAccessList.append(nextVertex)
# In any way, add "aaa" (array access analyzed) = True, and look at its operands
nextVertex.AddMetadata("aaa", True)
if nextVertex.operands == None : continue
for op in nextVertex.operands : verticesToCheck.append(op)
return arrayAccessList
# Vertex is any kind of node.
# This function finds all array read nodes that are descendants of vertex.
def ReduceDescendantArrayReadOfVertex(vertex, graph, ces, addtlExprs) :
arrayReadList = FindArrayAccessFromAncestors(vertex)
if arrayReadList == [] :
return vertex
arrayReadList.sort(key=lambda x: x.topRank)
for ar in arrayReadList :
# Reduce array read node (ar).
newVertex = ReduceThisArrayRead(ar, graph, addtlExprs)
# if ces is not None and ar exists in ces, then replace ar with newVertex
if ces != None :
for key, ce in ces.items() :
for i in range(0, len(ce)) :
if ce[i] == ar : ce[i] = newVertex
if (ar == vertex) and (newVertex != vertex) : vertex = newVertex
return vertex
def ExecuteBashZ3FromSolver(s) :
f = open(config.tempQueryFile, "w")
f.write(s.sexpr())
f.write("\n" + config.z3CheckSatCommand)
f.close()
smtStartTime = time.time()
proc = subprocess.Popen(["../z3-master/build/z3", config.tempQueryFile], stdout=subprocess.PIPE)
output = proc.stdout.readline()
output = output.decode('ascii').rstrip()
config.totalSmtTime = config.totalSmtTime + (time.time() - smtStartTime)
return output
def ExecuteZ3PyFromSolver(s) :
smtStartTime = time.time()
check = s.check()
config.totalSmtTime = config.totalSmtTime + (time.time() - smtStartTime)
if check == z3.unsat : return "unsat"
elif check == z3.sat : return "sat"
elif check == z3.unknown : return "unknown"
else :
sys.exit("Z3Py answer unexpected : %s" % (check))
def VerifyEquivalentDefaultMode(v1, v2, graph, addtlExprs) :
AddMetadataToSelfAndAllOperands(v1, "MRSG", True)
AddMetadataToSelfAndAllOperands(v2, "MRSG", True)
mrsgExpr = []
for v in graph.vertices :
if "MRSG" in v.metadata :
tempExpr = v.VertexOperationToSmt()
if tempExpr != None : mrsgExpr.append(tempExpr)
RemoveMetadataToSelfAndAllOperands(v1, "MRSG")
RemoveMetadataToSelfAndAllOperands(v2, "MRSG")
z3.set_option(timeout=config.smtTimeout)
s = z3.Solver()
s.add(addtlExprs)
s.add(mrsgExpr)
s.add(v1.VertexNameToSmt() != v2.VertexNameToSmt())
return ExecuteZ3PyFromSolver(s)
def VerifyEquivalentIntersectionMode(v1, v2, graph, addtlExprs) :
CalculateMinimalRelationalSubGraph(v1, v2)
mrsgExpr = []
for v in graph.vertices :
if not "MRSG" in v.metadata : continue
isUnbound = False
if v.operands == None : isUnbound = True
else :
for op in v.operands :
if op.type == depgraph.VertexNode.VertexType.FUNC : continue
if op.type == depgraph.VertexNode.VertexType.IMM : continue
if not "MRSG" in op.metadata :
isUnbound = True
break
if not isUnbound :
tempExpr = v.VertexOperationToSmt()
if tempExpr != None : mrsgExpr.append(tempExpr)
RemoveMetadataToSelfAndAllOperands(v1, "MRSG")
RemoveMetadataToSelfAndAllOperands(v1, "red")
RemoveMetadataToSelfAndAllOperands(v1, "blue")
RemoveMetadataToSelfAndAllOperands(v1, "MRSG_Analyzed")
RemoveMetadataToSelfAndAllOperands(v2, "MRSG")
RemoveMetadataToSelfAndAllOperands(v2, "red")
RemoveMetadataToSelfAndAllOperands(v2, "blue")
RemoveMetadataToSelfAndAllOperands(v2, "MRSG_Analyzed")
z3.set_option(timeout=config.smtTimeout)
s = z3.Solver()
s.add(addtlExprs)
s.add(mrsgExpr)
s.add(v1.VertexNameToSmt() != v2.VertexNameToSmt())
# if config.equivNodeNum == 358 :
# print(s.sexpr())
# sys.exit("")
return ExecuteZ3PyFromSolver(s)
def VerifyEquivalent(v1, v2, graph, addtlExprs, dolog = False, compNumber = 0) :
# Depending on verifMode configuration, act differently
if config.verifMode == 1 :
# Do default verification
return VerifyEquivalentDefaultMode(v1, v2, graph, addtlExprs)
elif config.verifMode == 2 :
# Do intersection verification
return VerifyEquivalentIntersectionMode(v1, v2, graph, addtlExprs)
elif config.verifMode == 3 :
# Do intersection -> if not unsat, then default
result = VerifyEquivalentIntersectionMode(v1, v2, graph, addtlExprs)
if result != "unsat" :
result = VerifyEquivalentDefaultMode(v1, v2, graph, addtlExprs)
return result
def VerifyMayAlias(v1, v2, graph, addtlExprs) :
AddMetadataToSelfAndAllOperands(v1, "MRSG", True)
AddMetadataToSelfAndAllOperands(v2, "MRSG", True)
mrsgExpr = []
for v in graph.vertices :
if "MRSG" in v.metadata :
tempExpr = v.VertexOperationToSmt()
if tempExpr != None : mrsgExpr.append(tempExpr)
RemoveMetadataToSelfAndAllOperands(v1, "MRSG")
RemoveMetadataToSelfAndAllOperands(v2, "MRSG")
z3.set_option(timeout=config.smtTimeout)
s = z3.Solver()
s.add(addtlExprs)
s.add(mrsgExpr)
s.add(v1.VertexNameToSmt() == v2.VertexNameToSmt())
# 8, 1
# if config.readNodeNum == 8 and config.indexAliasNum == 1 :
# print(s.sexpr())
# sys.exit("")
return ExecuteZ3PyFromSolver(s)
# Given a vertex and confEquivSet, classifies vertex in confEquivSet.
# Also, cleans the graph accordingly if an equivalence set is found.
def ClassifyVertexToConfEquivSet(v2, graph, confEquivSet, addtlExprs, compNumber) :
assert(v2.equivClassId in confEquivSet)
compareAgainst = [x for x in confEquivSet[v2.equivClassId]]
for v1 in compareAgainst :
# Remove array read node in v1 and v1's descendants
if config.aliasAnalysis :
ansiCode.Print("\n")
aliasAnalysisStartTime = time.time()
v1 = ReduceDescendantArrayReadOfVertex(v1, graph, confEquivSet, addtlExprs)
v2 = ReduceDescendantArrayReadOfVertex(v2, graph, confEquivSet, addtlExprs)
config.totalAliasAnalysisTime = config.totalAliasAnalysisTime + (time.time() - aliasAnalysisStartTime)
ansiCode.Print("%s%s%s" % (ansiCode.Left(1000), ansiCode.ClearLine(0), ansiCode.Up(1)))
# If they are the same node, return.
if v1 == v2 :
config.equivNodeNum = config.equivNodeNum + 1
return graph, confEquivSet
# Check equivalence of v1 and v2.
check = VerifyEquivalent(v1, v2, graph, addtlExprs, True, compNumber)
# If they are equivalent, add v1 to confEquivSet, and change graph accordingly.
if check == "unsat" :
# If both of them are VAR/TEMP, then we use ReplaceVertex
if depgraph.VertexNode.VertexType.IsVarOrTemp(v1.type) and \
depgraph.VertexNode.VertexType.IsVarOrTemp(v2.type) :
depgraph.DepGraph.ReplaceVertex(v2, v1)
else :
assert(v1.type == depgraph.VertexNode.VertexType.IMM or \
v2.type == depgraph.VertexNode.VertexType.IMM)
depgraph.DepGraph.ReplaceVertex(v2, v1)
config.equivNodeNum = config.equivNodeNum + 1
return graph, confEquivSet
elif check == "unknown" :
config.currentUnknownCount = config.currentUnknownCount + 1
if config.currentUnknownCount >= config.maxUnknownCount :
config.analysisEndTime = time.time()
ansiCode.Print("\n")
ansiCode.PrintOnThisLineBold("%sp1 is not equivalent to p2 (Reason: SMT Timeout)\n" % (ansiCode.red))
config.PrintStatistics()
config.PrintGout("p1 is not equivalent to p2 (Reason: SMT Timeout)")
sys.exit("")
# else do nothing!
# If none of them are equivalent, add v2 to confEquivSet.
confEquivSet[v2.equivClassId].append(v2)
config.noEquivNodeNum = config.noEquivNodeNum + 1
return graph, confEquivSet