-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathe01_1_quickSim.m
175 lines (138 loc) · 5.07 KB
/
e01_1_quickSim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
% [OBSOLETE] Quick simulation
% Simulates a noiseless curve for tissue of interest and reference region
% Plasma volume component is included in tissue of interest
% with vp = 0.001 to 0.1
% Simulated data is fitted with reference region models
% Only some of the results are shown at the end.
% Estimated runtime: <10 seconds
%% Pre-setup
% Start with a clean slate
clearvars
% Add auxiliary files
addpath('./mfiles')
% Start timing the script
tic
%% Settings
% Sigma (stdDev) for noise level in tissue of interest and reference region
% This script works well if sigmaCt=0, sigmaCrr=0
% otherwise, the y-axis limits will have to be modified
sigmaCt = 0.0;
sigmaCrr = 0.1*sigmaCt;
% Parameters for tissue of interest
kt = 0.25; % Ktrans in 1/min
kep = 0.625; % kep in 1/min
ve = kt/kep;
% Parameters for reference tissue
ktRR = 0.07; % units: 1/min
kepRR = 0.5; % units: 1/min
veRR = ktRR/kepRR;
% Range of plasma volumes for tissue of interest
vpRange = 0:0.001:0.1;
% Properties of the simulation
sSize= 0.1; % Temporal resolution for generating simulated curves (in seconds)
tRes = 1; % Desired temporal resolution (in seconds), obtained by downsampling simulated data
t= sSize:sSize:600; % Time, in seconds
t= t'/60; % Convert time from seconds to minutes
% Generate the arterial input function using literature-based model
% Bolus arrival at 60 seconds
Cp = ParkerAif(t,t(60/sSize));
%% Simulate concentration in Tissue of Interest
Ct = zeros(length(t),length(vpRange));
for i=1:length(vpRange)
Ct(:,i) = ToftsKety(Cp,[kt kep vpRange(i)],t,1);
end
% Alternative method: simulate Ct with vp=0
% then make copies of Ct and add vp component to each copy
%% Simulate concentration in Reference Region
Crr = ToftsKety(Cp,[ktRR kepRR],t,0);
%% Add noise
% Has no effect if sigmaC* = 0
Ct = Ct + sigmaCt * randn(size(Ct));
Crr = Crr + sigmaCrr * randn(size(Crr));
%% Downsample
% Has no effect if tRes=sSize;
dFactor = tRes/sSize;
t=downsample(t,dFactor);
Ct=downsample(Ct,dFactor);
Crr=downsample(Crr,dFactor);
Cp = downsample(Cp,dFactor);
%% Fit models to simulated data
pkRRM = LRRM(Ct,Crr,t); % RRM
pkERRM = ERRM(Ct,Crr,t); % ERRM
pkERRMn = ERRM(Ct,Crr,t,true); % ERRM - using lsqnonneg
pkCERRM = CERRM(Ct,Crr,t); % CERRM
pkCERRMn = CERRM(Ct,Crr,t,[],true); % CERRM using lsqnonneg
% RTM = Reference Tissue Method - Not detailed in revised manuscript
pkRTM = doRTM(Ct,Crr,t,[ktRR veRR],0); % RTM with Tofts Model
pkERTM = doRTM(Ct,Crr,t,[ktRR veRR],1); % RTM with extended Tofts Model
%% Calculate the percent errors
errKtRRM = PercentError(pkRRM(:,1)*ktRR,kt);
errVeRRM = PercentError(pkRRM(:,2)*veRR,ve);
errKepRRM = PercentError(pkRRM(:,3),kep);
errKtERRM = PercentError(pkERRM(:,1)*ktRR,kt);
errVeERRM = PercentError(pkERRM(:,2)*veRR,ve);
errKepERRM = PercentError(pkERRM(:,3),kep);
errVpERRM = PercentError(pkERRM(:,4)*ktRR,vpRange);
errKtERRMn = PercentError(pkERRMn(:,1)*ktRR,kt);
errVeERRMn = PercentError(pkERRMn(:,2)*veRR,ve);
errKepERRMn = PercentError(pkERRMn(:,3),kep);
errVpERRMn = PercentError(pkERRMn(:,4)*ktRR,vpRange);
errKtCERRM = PercentError(pkCERRM(:,1)*ktRR,kt);
errVeCERRM = PercentError(pkCERRM(:,2)*veRR,ve);
errKepCERRM = PercentError(pkCERRM(:,3),kep);
errVpCERRM = PercentError(pkCERRM(:,4)*ktRR,vpRange);
errKtCERRMn = PercentError(pkCERRMn(:,1)*ktRR,kt);
errVeCERRMn = PercentError(pkCERRMn(:,2)*veRR,ve);
errKepCERRMn = PercentError(pkCERRMn(:,3),kep);
errVpCERRMn = PercentError(pkCERRMn(:,4)*ktRR,vpRange);
errKtRTM = PercentError(pkRTM(:,1),kt);
errVeRTM = PercentError(pkRTM(:,1)./pkRTM(:,2),ve);
errKepRTM = PercentError(pkRTM(:,2),kep);
errKtERTM = PercentError(pkERTM(:,1),kt);
errVeERTM = PercentError(pkERTM(:,1)./pkERTM(:,2),ve);
errKepERTM = PercentError(pkERTM(:,2),kep);
errVpERTM = PercentError(pkERTM(:,3),vpRange);
%% Plot results
% Specify the line colours
lineColours{1} = [255,44,127]./255; % RRM - pink/red
lineColours{2} = [255,196,68]./255; % ERRM - orange/gold
lineColours{3} = [126,47,142]./255; % CERRM - purple
% Define the line styles
lineStyles{1} = '-'; % RRM - solid
lineStyles{2} = '-'; % ERRM - solid
lineStyles{3} = '--'; % CERRM - dashed
% x-axis is plasma volume
x = vpRange;
% Plot everything as subplots in one figure
figure('Position',[300 300 700 700])
% Percent error in Ktrans
subplot(2,2,1)
iterPlot(x,[errKtRRM,errKtERRM,errKtCERRM],lineColours,lineStyles)
legend('RRM','ERRM','CERRM','Location','northwest')
xlabel('Plasma volume')
ylabel('Percent Error')
title('K^{trans}')
% Percent error in kep
subplot(2,2,2)
iterPlot(x,[errKepRRM,errKepERRM,errKepCERRM],lineColours,lineStyles)
legend('RRM','ERRM','CERRM','Location','northwest')
xlabel('Plasma volume')
title('k_{ep}')
% Percent error in ve
subplot(2,2,3)
iterPlot(x,[errVeRRM,errVeERRM,errVeCERRM],lineColours,lineStyles)
legend('RRM','ERRM','CERRM','Location','northwest')
xlabel('Plasma volume')
ylabel('Percent Error')
title('v_e')
% Percent error in vp (ERRM and CERRM only, no RRM)
subplot(2,2,4)
iterPlot(x,[errVpERRM,errVpCERRM],lineColours(2:3),lineStyles(2:3))
legend('ERRM','CERRM')
xlabel('Plasma volume')
ylabel('Percent Error')
title('v_p')
ylim([-0.05 0.2])
%%
toc
disp('Finished quick simulation')