forked from dmlc/mxnet.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classify_image.js
127 lines (119 loc) · 4.36 KB
/
classify_image.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
function logProgress(progress) {
$('#myProgress')
.css('width', progress+'%')
.attr('aria-valuenow', progress);
}
function resetProgress() {
$('#myProgress')
.attr('class', 'progress-bar')
.css('width', '0%')
.attr('aria-valuenow', '0')
.html('');
}
function logEvent(str) {
console.log(str);
var d = document.createElement('div');
d.innerHTML = str;
document.getElementById('result').appendChild(d);
}
function logError(message) {
$('#myProgress')
.attr('class', 'progress-bar progress-bar-danger')
.css('width', '100%')
.attr('aria-valuenow', 100).html(message);
logEvent(message);
}
function preproc(url, targetLen, meanimg, callback) {
var canvas = document.getElementById('myCanvas');
var context = canvas.getContext('2d');
var image = new Image();
var targetLen = 224;
image.setAttribute('crossOrigin', 'anonymous');
image.onload = function() {
var sourceWidth = this.width;
var sourceHeight = this.height;
var shortEdge = Math.min(this.width, this.height);
var yy = Math.floor((sourceHeight - shortEdge) / 2);
var xx = Math.floor((sourceWidth - shortEdge) / 2);
context.drawImage(image,
xx, yy,
shortEdge, shortEdge,
0, 0,
targetLen, targetLen);
var imgdata = context.getImageData(0, 0, targetLen, targetLen);
var data = new Float32Array(targetLen * targetLen * 3);
var stride = targetLen * targetLen;
for (var i = 0; i < stride; ++i) {
data[stride * 0 + i] = imgdata.data[i * 4 + 0];
data[stride * 1 + i] = imgdata.data[i * 4 + 1];
data[stride * 2 + i] = imgdata.data[i * 4 + 2];
}
if (typeof meanimg !== 'undefined') {
for (var i = 0; i < data.length; ++i) {
data[i] = data[i] - meanimg.data[i];
}
} else {
// use 117 as mean by default.
for (var i = 0; i < data.length; ++i) {
data[i] = data[i] - 117;
}
}
var nd = ndarray(data, [1, 3, targetLen, targetLen]);
callback(nd);
};
$(image).bind('error', function (event) {
logError("Opps.. Failed to load image " + url);
});
image.src = url;
}
function start() {
$.getJSON("./model/fastpoor.json", function(model) {
var url = document.getElementById("imageURL").value;
pred = new Predictor(model, {'data': [1, 3, 224, 224]});
preproc(url, 224, pred.meanimg, function(nd) {
pred.setinput('data', nd);
logEvent("start... prediction... this can take a while");
// delay 1sec before running prediction, so the log event renders on webpage.
var start = new Date().getTime();
// print every 10%
var print_step = 10;
// reset progress bar
resetProgress();
function trainloop(step, nleft, next_goal, finish_callback) {
if (nleft == 0) {
finish_callback(); return;
}
nleft = pred.partialforward(step);
progress = (step + 1) / (nleft + step + 1) * 100;
if (progress >= next_goal || progress == 100) {
logProgress(progress);
setTimeout(function() {
trainloop(step + 1, nleft, next_goal + print_step, finish_callback);
}, 1);
} else {
setTimeout(function() {
trainloop(step + 1, nleft, next_goal, finish_callback);
}, 0);
}
}
trainloop(0, 1, 0, function() {
logEvent("finished prediction....");
out = pred.output(0);
var index = new Array();
for (var i=0;i<out.data.length;i++) {
index[i] = i;
}
max_output = Number(document.getElementById("max-output").value);
logEvent("Max output = " + max_output);
index.sort(function(a,b) {return out.data[b]-out.data[a];});
var end = new Date().getTime();
var time = (end - start) / 1000;
logEvent("time-cost=" + time + " sec");
for (var i = 0; i < max_output; i++) {
logEvent('Top-' + (i+1) + ':' + model.synset[index[i]] + ', value=' + out.data[index[i]]);
}
pred.destroy();
});
});
});
}